| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.36v | Structured version Visualization version GIF version | ||
| Description: Version of 19.36 2098 with a dv condition instead of a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 17-Jan-2020.) |
| Ref | Expression |
|---|---|
| 19.36v | ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1805 | . 2 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.9v 1896 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
| 3 | 2 | imbi2i 326 | . 2 ⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| 4 | 1, 3 | bitri 264 | 1 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: 19.36iv 1905 19.12vvv 1907 19.12vv 2180 ax13lem2 2296 axext2 2603 vtocl2 3261 vtocl3 3262 bnj1090 31047 bj-spimvwt 32656 bj-spcimdv 32884 bj-spcimdvv 32885 19.36vv 38582 |
| Copyright terms: Public domain | W3C validator |