MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.12vv Structured version   Visualization version   GIF version

Theorem 19.12vv 2180
Description: Special case of 19.12 2164 where its converse holds. See 19.12vvv 1907 for a version with a dv condition requiring fewer axioms. (Contributed by NM, 18-Jul-2001.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
19.12vv (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem 19.12vv
StepHypRef Expression
1 19.21v 1868 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
21exbii 1774 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓))
3 nfv 1843 . . . 4 𝑥𝜓
43nfal 2153 . . 3 𝑥𝑦𝜓
5419.36 2098 . 2 (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
6 19.36v 1904 . . . 4 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
76albii 1747 . . 3 (∀𝑦𝑥(𝜑𝜓) ↔ ∀𝑦(∀𝑥𝜑𝜓))
8 nfv 1843 . . . . 5 𝑦𝜑
98nfal 2153 . . . 4 𝑦𝑥𝜑
10919.21 2075 . . 3 (∀𝑦(∀𝑥𝜑𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
117, 10bitr2i 265 . 2 ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
122, 5, 113bitri 286 1 (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator