| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.40b | Structured version Visualization version GIF version | ||
| Description: The antecedent provides a condition implying the converse of 19.40 1797. This is to 19.40 1797 what 19.33b 1813 is to 19.33 1812. (Contributed by BJ, 6-May-2019.) (Proof shortened by Wolf Lammen, 13-Nov-2020.) |
| Ref | Expression |
|---|---|
| 19.40b | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 464 | . . . . 5 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 2 | 1 | aleximi 1759 | . . . 4 ⊢ (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 3 | pm3.2 463 | . . . . 5 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 4 | 3 | aleximi 1759 | . . . 4 ⊢ (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥(𝜑 ∧ 𝜓))) |
| 5 | 2, 4 | jaoa 532 | . . 3 ⊢ ((∀𝑥𝜓 ∨ ∀𝑥𝜑) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| 6 | 5 | orcoms 404 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| 7 | 19.40 1797 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | |
| 8 | 6, 7 | impbid1 215 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |