| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jaoa | Structured version Visualization version GIF version | ||
| Description: Inference disjoining and conjoining the antecedents of two implications. (Contributed by Stefan Allan, 1-Nov-2008.) |
| Ref | Expression |
|---|---|
| jaao.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaao.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaoa | ⊢ ((𝜑 ∨ 𝜃) → ((𝜓 ∧ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaao.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantrd 484 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜏) → 𝜒)) |
| 3 | jaao.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
| 4 | 3 | adantld 483 | . 2 ⊢ (𝜃 → ((𝜓 ∧ 𝜏) → 𝜒)) |
| 5 | 2, 4 | jaoi 394 | 1 ⊢ ((𝜑 ∨ 𝜃) → ((𝜓 ∧ 𝜏) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: pm4.79 607 19.40b 1815 abslt 14054 absle 14055 unconn 21232 dfon2lem4 31691 clsk1indlem3 38341 |
| Copyright terms: Public domain | W3C validator |