| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.41rg | Structured version Visualization version GIF version | ||
| Description: Closed form of right-to-left implication of 19.41 2103, Theorem 19.41 of [Margaris] p. 90. Derived from 19.41rgVD 39138. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.41rg | ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 | . . . 4 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓)) | |
| 2 | pm3.21 464 | . . . . . . 7 ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))) |
| 4 | 3 | al2imi 1743 | . . . . 5 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑 ∧ 𝜓)))) |
| 5 | exim 1761 | . . . . 5 ⊢ (∀𝑥(𝜑 → (𝜑 ∧ 𝜓)) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | |
| 6 | 4, 5 | syl6 35 | . . . 4 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))) |
| 7 | 1, 6 | syld 47 | . . 3 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))) |
| 8 | 7 | com23 86 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑 ∧ 𝜓)))) |
| 9 | 8 | impd 447 | 1 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: ax6e2nd 38774 ax6e2ndVD 39144 ax6e2ndALT 39166 |
| Copyright terms: Public domain | W3C validator |