![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbeq2gOLD | Structured version Visualization version GIF version |
Description: Formula-building implication rule for class substitution. Closed form of csbeq2i 3993. csbeq2gOLD 38765 is derived from the virtual deduction proof csbeq2gVD 39128. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete version of csbeq2 3537 as of 11-Oct-2018. (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
csbeq2gOLD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbc 3448 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → [𝐴 / 𝑥]𝐵 = 𝐶)) | |
2 | sbceqg 3984 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
3 | 1, 2 | sylibd 229 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 ∈ wcel 1990 [wsbc 3435 ⦋csb 3533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 |
This theorem is referenced by: csbsngVD 39129 csbxpgVD 39130 csbresgVD 39131 csbrngVD 39132 csbima12gALTVD 39133 |
Copyright terms: Public domain | W3C validator |