Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbeq2gOLD Structured version   Visualization version   GIF version

Theorem csbeq2gOLD 38765
Description: Formula-building implication rule for class substitution. Closed form of csbeq2i 3993. csbeq2gOLD 38765 is derived from the virtual deduction proof csbeq2gVD 39128. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete version of csbeq2 3537 as of 11-Oct-2018. (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbeq2gOLD (𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem csbeq2gOLD
StepHypRef Expression
1 spsbc 3448 . 2 (𝐴𝑉 → (∀𝑥 𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
2 sbceqg 3984 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
31, 2sylibd 229 1 (𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481   = wceq 1483  wcel 1990  [wsbc 3435  csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534
This theorem is referenced by:  csbsngVD  39129  csbxpgVD  39130  csbresgVD  39131  csbrngVD  39132  csbima12gALTVD  39133
  Copyright terms: Public domain W3C validator