![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1strwunbndx | Structured version Visualization version GIF version |
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
1str.g | ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} |
1strwun.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
1strwunbndx.b | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
Ref | Expression |
---|---|
1strwunbndx | ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1str.g | . 2 ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉} | |
2 | 1strwun.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ WUni) |
4 | 1strwunbndx.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → (Base‘ndx) ∈ 𝑈) |
6 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑈) | |
7 | 3, 5, 6 | wunop 9544 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 〈(Base‘ndx), 𝐵〉 ∈ 𝑈) |
8 | 3, 7 | wunsn 9538 | . 2 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → {〈(Base‘ndx), 𝐵〉} ∈ 𝑈) |
9 | 1, 8 | syl5eqel 2705 | 1 ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑈) → 𝐺 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {csn 4177 〈cop 4183 ‘cfv 5888 WUnicwun 9522 ndxcnx 15854 Basecbs 15857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-tr 4753 df-wun 9524 |
This theorem is referenced by: 1strwun 15982 equivestrcsetc 16792 |
Copyright terms: Public domain | W3C validator |