MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1strwunbndx Structured version   Visualization version   GIF version

Theorem 1strwunbndx 15981
Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020.)
Hypotheses
Ref Expression
1str.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
1strwun.u (𝜑𝑈 ∈ WUni)
1strwunbndx.b (𝜑 → (Base‘ndx) ∈ 𝑈)
Assertion
Ref Expression
1strwunbndx ((𝜑𝐵𝑈) → 𝐺𝑈)

Proof of Theorem 1strwunbndx
StepHypRef Expression
1 1str.g . 2 𝐺 = {⟨(Base‘ndx), 𝐵⟩}
2 1strwun.u . . . 4 (𝜑𝑈 ∈ WUni)
32adantr 481 . . 3 ((𝜑𝐵𝑈) → 𝑈 ∈ WUni)
4 1strwunbndx.b . . . . 5 (𝜑 → (Base‘ndx) ∈ 𝑈)
54adantr 481 . . . 4 ((𝜑𝐵𝑈) → (Base‘ndx) ∈ 𝑈)
6 simpr 477 . . . 4 ((𝜑𝐵𝑈) → 𝐵𝑈)
73, 5, 6wunop 9544 . . 3 ((𝜑𝐵𝑈) → ⟨(Base‘ndx), 𝐵⟩ ∈ 𝑈)
83, 7wunsn 9538 . 2 ((𝜑𝐵𝑈) → {⟨(Base‘ndx), 𝐵⟩} ∈ 𝑈)
91, 8syl5eqel 2705 1 ((𝜑𝐵𝑈) → 𝐺𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {csn 4177  cop 4183  cfv 5888  WUnicwun 9522  ndxcnx 15854  Basecbs 15857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-tr 4753  df-wun 9524
This theorem is referenced by:  1strwun  15982  equivestrcsetc  16792
  Copyright terms: Public domain W3C validator