| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2exanali | Structured version Visualization version GIF version | ||
| Description: Theorem *11.521 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
| Ref | Expression |
|---|---|
| 2exanali | ⊢ (¬ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nalexn 1755 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | con1bii 346 | . 2 ⊢ (¬ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| 3 | annim 441 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
| 4 | 3 | 2exbii 1775 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓)) |
| 5 | 2, 4 | xchnxbir 323 | 1 ⊢ (¬ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |