![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2exbii | Structured version Visualization version GIF version |
Description: Inference adding two existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
2exbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
2exbii | ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | exbii 1774 | . 2 ⊢ (∃𝑦𝜑 ↔ ∃𝑦𝜓) |
3 | 2 | exbii 1774 | 1 ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: 3exbii 1776 3exdistr 1923 eeeanv 2183 ee4anv 2184 cbvex4v 2289 2sb5rf 2451 sbel2x 2459 2exsb 2469 2mo2 2550 rexcomf 3097 reean 3106 ceqsex3v 3246 ceqsex4v 3247 ceqsex8v 3249 vtocl3 3262 copsexg 4956 opelopabsbALT 4984 opabn0 5006 elxp2 5132 rabxp 5154 elxp3 5169 elvv 5177 elvvv 5178 copsex2gb 5230 elcnv2 5300 cnvuni 5309 xpdifid 5562 coass 5654 fununi 5964 dfmpt3 6014 tpres 6466 dfoprab2 6701 dmoprab 6741 rnoprab 6743 mpt2mptx 6751 resoprab 6756 elrnmpt2res 6774 ov3 6797 ov6g 6798 uniuni 6971 oprabex3 7157 wfrlem4 7418 oeeu 7683 xpassen 8054 zorn2lem6 9323 ltresr 9961 axaddf 9966 axmulf 9967 hashfun 13224 hash2prb 13254 5oalem7 28519 mpt2mptxf 29477 eulerpartlemgvv 30438 bnj600 30989 bnj916 31003 bnj983 31021 bnj986 31024 bnj996 31025 bnj1021 31034 elima4 31679 brtxp2 31988 brpprod3a 31993 brpprod3b 31994 elfuns 32022 brcart 32039 brimg 32044 brapply 32045 brsuccf 32048 brrestrict 32056 dfrdg4 32058 ellines 32259 bj-cbvex4vv 32743 itg2addnclem3 33463 dalem20 34979 dvhopellsm 36406 diblsmopel 36460 pm11.52 38586 2exanali 38587 pm11.6 38592 pm11.7 38596 opelopab4 38767 stoweidlem35 40252 mpt2mptx2 42113 |
Copyright terms: Public domain | W3C validator |