| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sp | Structured version Visualization version GIF version | ||
| Description: A double specialization (see sp 2053). Another double specialization, closer to PM*11.1, is 2stdpc4 2354. (Contributed by BJ, 15-Sep-2018.) |
| Ref | Expression |
|---|---|
| 2sp | ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 | . 2 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 2 | 1 | sps 2055 | 1 ⊢ (∀𝑥∀𝑦𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: cbv1h 2268 csbie2t 3562 copsex2t 4957 wfrlem5 7419 fundmpss 31664 frrlem5 31784 bj-cbv1hv 32730 ax11-pm 32819 mbfresfi 33456 cotrintab 37921 pm14.123b 38627 |
| Copyright terms: Public domain | W3C validator |