MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sp Structured version   Visualization version   Unicode version

Theorem 2sp 2056
Description: A double specialization (see sp 2053). Another double specialization, closer to PM*11.1, is 2stdpc4 2354. (Contributed by BJ, 15-Sep-2018.)
Assertion
Ref Expression
2sp  |-  ( A. x A. y ph  ->  ph )

Proof of Theorem 2sp
StepHypRef Expression
1 sp 2053 . 2  |-  ( A. y ph  ->  ph )
21sps 2055 1  |-  ( A. x A. y ph  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705
This theorem is referenced by:  cbv1h  2268  csbie2t  3562  copsex2t  4957  wfrlem5  7419  fundmpss  31664  frrlem5  31784  bj-cbv1hv  32730  ax11-pm  32819  mbfresfi  33456  cotrintab  37921  pm14.123b  38627
  Copyright terms: Public domain W3C validator