| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anbi2i | Structured version Visualization version GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi2i | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 251 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 2 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | biid 251 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1251 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) ↔ (𝜒 ∧ 𝜓 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: f13dfv 6530 axgroth4 9654 fi1uzind 13279 fi1uzindOLD 13285 bnj543 30963 bnj916 31003 topdifinffinlem 33195 |
| Copyright terms: Public domain | W3C validator |