| Step | Hyp | Ref
| Expression |
| 1 | | hashcl 13147 |
. . . 4
⊢ (𝑉 ∈ Fin →
(#‘𝑉) ∈
ℕ0) |
| 2 | | df-clel 2618 |
. . . . 5
⊢
((#‘𝑉) ∈
ℕ0 ↔ ∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈
ℕ0)) |
| 3 | | fi1uzindOLD.l |
. . . . . . . . . . . . . . 15
⊢ 𝐿 ∈
ℕ0 |
| 4 | | nn0z 11400 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
| 5 | 3, 4 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ≤ (#‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (#‘𝑉)) → 𝐿 ∈ ℤ) |
| 6 | | nn0z 11400 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 7 | 6 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ≤ (#‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (#‘𝑉)) → 𝑛 ∈ ℤ) |
| 8 | | breq2 4657 |
. . . . . . . . . . . . . . . . . 18
⊢
((#‘𝑉) = 𝑛 → (𝐿 ≤ (#‘𝑉) ↔ 𝐿 ≤ 𝑛)) |
| 9 | 8 | eqcoms 2630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (#‘𝑉) → (𝐿 ≤ (#‘𝑉) ↔ 𝐿 ≤ 𝑛)) |
| 10 | 9 | biimpcd 239 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 ≤ (#‘𝑉) → (𝑛 = (#‘𝑉) → 𝐿 ≤ 𝑛)) |
| 11 | 10 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ≤ (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑛 = (#‘𝑉) → 𝐿 ≤ 𝑛)) |
| 12 | 11 | imp 445 |
. . . . . . . . . . . . . 14
⊢ (((𝐿 ≤ (#‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (#‘𝑉)) → 𝐿 ≤ 𝑛) |
| 13 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐿 → (𝑥 = (#‘𝑣) ↔ 𝐿 = (#‘𝑣))) |
| 14 | 13 | anbi2d 740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐿 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (#‘𝑣)))) |
| 15 | 14 | imbi1d 331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐿 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (#‘𝑣)) → 𝜓))) |
| 16 | 15 | 2albidv 1851 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐿 → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (#‘𝑣)) → 𝜓))) |
| 17 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 = (#‘𝑣) ↔ 𝑦 = (#‘𝑣))) |
| 18 | 17 | anbi2d 740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)))) |
| 19 | 18 | imbi1d 331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)) → 𝜓))) |
| 20 | 19 | 2albidv 1851 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)) → 𝜓))) |
| 21 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑦 + 1) → (𝑥 = (#‘𝑣) ↔ (𝑦 + 1) = (#‘𝑣))) |
| 22 | 21 | anbi2d 740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 + 1) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)))) |
| 23 | 22 | imbi1d 331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 + 1) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → 𝜓))) |
| 24 | 23 | 2albidv 1851 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 + 1) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → 𝜓))) |
| 25 | | eqeq1 2626 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑛 → (𝑥 = (#‘𝑣) ↔ 𝑛 = (#‘𝑣))) |
| 26 | 25 | anbi2d 740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑛 → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)))) |
| 27 | 26 | imbi1d 331 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑛 → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓))) |
| 28 | 27 | 2albidv 1851 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑥 = (#‘𝑣)) → 𝜓) ↔ ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓))) |
| 29 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 = (#‘𝑣) ↔ (#‘𝑣) = 𝐿) |
| 30 | | fi1uzindOLD.base |
. . . . . . . . . . . . . . . . . 18
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (#‘𝑣) = 𝐿) → 𝜓) |
| 31 | 29, 30 | sylan2b 492 |
. . . . . . . . . . . . . . . . 17
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (#‘𝑣)) → 𝜓) |
| 32 | 31 | gen2 1723 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (#‘𝑣)) → 𝜓) |
| 33 | 32 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ∈ ℤ →
∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝐿 = (#‘𝑣)) → 𝜓)) |
| 34 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → 𝑣 = 𝑤) |
| 35 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓) |
| 36 | 35 | sbceq1d 3440 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ([𝑒 / 𝑏]𝜌 ↔ [𝑓 / 𝑏]𝜌)) |
| 37 | 34, 36 | sbceqbid 3442 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ↔ [𝑤 / 𝑎][𝑓 / 𝑏]𝜌)) |
| 38 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑤 → (#‘𝑣) = (#‘𝑤)) |
| 39 | 38 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = 𝑤 → (𝑦 = (#‘𝑣) ↔ 𝑦 = (#‘𝑤))) |
| 40 | 39 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝑦 = (#‘𝑣) ↔ 𝑦 = (#‘𝑤))) |
| 41 | 37, 40 | anbi12d 747 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)) ↔ ([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)))) |
| 42 | | fi1uzindOLD.2 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
| 43 | 41, 42 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)) → 𝜓) ↔ (([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃))) |
| 44 | 43 | cbval2v 2285 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)) → 𝜓) ↔ ∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃)) |
| 45 | | nn0ge0 11318 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐿 ∈ ℕ0
→ 0 ≤ 𝐿) |
| 46 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℤ → 0 ∈
ℝ) |
| 47 | | nn0re 11301 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
| 48 | 3, 47 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℤ → 𝐿 ∈
ℝ) |
| 49 | | zre 11381 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℝ) |
| 50 | | letr 10131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0
∈ ℝ ∧ 𝐿
∈ ℝ ∧ 𝑦
∈ ℝ) → ((0 ≤ 𝐿 ∧ 𝐿 ≤ 𝑦) → 0 ≤ 𝑦)) |
| 51 | 46, 48, 49, 50 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℤ → ((0 ≤
𝐿 ∧ 𝐿 ≤ 𝑦) → 0 ≤ 𝑦)) |
| 52 | | 0nn0 11307 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 ∈
ℕ0 |
| 53 | | pm3.22 465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦)) |
| 54 | | 0z 11388 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 0 ∈
ℤ |
| 55 | | eluz1 11691 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (0 ∈
ℤ → (𝑦 ∈
(ℤ≥‘0) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦))) |
| 56 | 54, 55 | mp1i 13 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → (𝑦 ∈ (ℤ≥‘0)
↔ (𝑦 ∈ ℤ
∧ 0 ≤ 𝑦))) |
| 57 | 53, 56 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → 𝑦 ∈
(ℤ≥‘0)) |
| 58 | | eluznn0 11757 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((0
∈ ℕ0 ∧ 𝑦 ∈ (ℤ≥‘0))
→ 𝑦 ∈
ℕ0) |
| 59 | 52, 57, 58 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((0 ≤
𝑦 ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℕ0) |
| 60 | 59 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (0 ≤
𝑦 → (𝑦 ∈ ℤ → 𝑦 ∈
ℕ0)) |
| 61 | 51, 60 | syl6com 37 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0 ≤
𝐿 ∧ 𝐿 ≤ 𝑦) → (𝑦 ∈ ℤ → (𝑦 ∈ ℤ → 𝑦 ∈
ℕ0))) |
| 62 | 61 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (0 ≤
𝐿 → (𝐿 ≤ 𝑦 → (𝑦 ∈ ℤ → (𝑦 ∈ ℤ → 𝑦 ∈
ℕ0)))) |
| 63 | 62 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℤ → (𝐿 ≤ 𝑦 → (𝑦 ∈ ℤ → (0 ≤ 𝐿 → 𝑦 ∈
ℕ0)))) |
| 64 | 63 | pm2.43a 54 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℤ → (𝐿 ≤ 𝑦 → (0 ≤ 𝐿 → 𝑦 ∈
ℕ0))) |
| 65 | 64 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → (0 ≤ 𝐿 → 𝑦 ∈
ℕ0)) |
| 66 | 65 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0 ≤
𝐿 → ((𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → 𝑦 ∈
ℕ0)) |
| 67 | 3, 45, 66 | mp2b 10 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → 𝑦 ∈ ℕ0) |
| 68 | 67 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → 𝑦 ∈ ℕ0) |
| 69 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 + 1) = (#‘𝑣) ↔ (#‘𝑣) = (𝑦 + 1)) |
| 70 | | nn0p1gt0 11322 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ ℕ0
→ 0 < (𝑦 +
1)) |
| 71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℕ0
∧ (#‘𝑣) = (𝑦 + 1)) → 0 < (𝑦 + 1)) |
| 72 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℕ0
∧ (#‘𝑣) = (𝑦 + 1)) → (#‘𝑣) = (𝑦 + 1)) |
| 73 | 71, 72 | breqtrrd 4681 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ0
∧ (#‘𝑣) = (𝑦 + 1)) → 0 <
(#‘𝑣)) |
| 74 | 69, 73 | sylan2b 492 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℕ0
∧ (𝑦 + 1) =
(#‘𝑣)) → 0 <
(#‘𝑣)) |
| 75 | 74 | adantrl 752 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣))) → 0 < (#‘𝑣)) |
| 76 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑣 ∈ V |
| 77 | | hashgt0elex 13189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑣 ∈ V ∧ 0 <
(#‘𝑣)) →
∃𝑛 𝑛 ∈ 𝑣) |
| 78 | | fi1uzindOLD.3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) |
| 79 | 76 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑣 ∈ V) |
| 80 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑛 ∈ 𝑣) |
| 81 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → 𝑦 ∈ ℕ0) |
| 82 | | brfi1indlem 13278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0) →
((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 83 | 69, 82 | syl5bi 232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) = (#‘𝑣) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 84 | 79, 80, 81, 83 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) = (#‘𝑣) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 85 | 84 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣)) → (#‘(𝑣 ∖ {𝑛})) = 𝑦) |
| 86 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑦 ∈ ℕ0
→ (𝑦 + 1) ∈
ℕ0) |
| 87 | 86 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣)) → (𝑦 + 1) ∈
ℕ0) |
| 88 | 87 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → (𝑦 + 1) ∈
ℕ0) |
| 89 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) |
| 90 | | simplrr 801 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → (𝑦 + 1) = (#‘𝑣)) |
| 91 | | simprlr 803 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢
(((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) → 𝑛 ∈ 𝑣) |
| 92 | 91 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → 𝑛 ∈ 𝑣) |
| 93 | 89, 90, 92 | 3jca 1242 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣) ∧ 𝑛 ∈ 𝑣)) |
| 94 | 88, 93 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((𝑦 + 1) ∈ ℕ0 ∧
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣) ∧ 𝑛 ∈ 𝑣))) |
| 95 | | difexg 4808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ (𝑣 ∈ V → (𝑣 ∖ {𝑛}) ∈ V) |
| 96 | 76, 95 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑣 ∖ {𝑛}) ∈ V |
| 97 | | fi1uzindOLD.f |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ 𝐹 ∈ 𝑈 |
| 98 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → 𝑤 = (𝑣 ∖ {𝑛})) |
| 99 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
| 100 | 99 | sbceq1d 3440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ([𝑓 / 𝑏]𝜌 ↔ [𝐹 / 𝑏]𝜌)) |
| 101 | 98, 100 | sbceqbid 3442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ↔ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌)) |
| 102 | | eqcom 2629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ (𝑦 = (#‘𝑤) ↔ (#‘𝑤) = 𝑦) |
| 103 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 50
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → (#‘𝑤) = (#‘(𝑣 ∖ {𝑛}))) |
| 104 | 103 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 49
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 105 | 102, 104 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 48
⊢ (𝑤 = (𝑣 ∖ {𝑛}) → (𝑦 = (#‘𝑤) ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 106 | 105 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 47
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑦 = (#‘𝑤) ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦)) |
| 107 | 101, 106 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) ↔ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦))) |
| 108 | | fi1uzindOLD.4 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 46
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
| 109 | 107, 108 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 45
⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ↔ (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
| 110 | 109 | spc2gv 3296 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹 ∈ 𝑈) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))) |
| 111 | 96, 97, 110 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → (([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)) |
| 112 | 111 | expdimp 453 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢
((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
| 113 | 112 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜒)) |
| 114 | 69 | 3anbi2i 1254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣) ∧ 𝑛 ∈ 𝑣) ↔ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
| 115 | 114 | anbi2i 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (((𝑦 + 1) ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
| 116 | | fi1uzindOLD.step |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| 117 | 115, 116 | sylanb 489 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ ((((𝑦 + 1) ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| 118 | 94, 113, 117 | syl6an 568 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢
((((∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) ∧ [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌) ∧ ((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣))) ∧ [𝑣 / 𝑎][𝑒 / 𝑏]𝜌) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓)) |
| 119 | 118 | exp41 638 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣)) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → 𝜓))))) |
| 120 | 119 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
((#‘(𝑣 ∖
{𝑛})) = 𝑦 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣)) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 121 | 120 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢
((#‘(𝑣 ∖
{𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣)) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 122 | 85, 121 | mpcom 38 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) ∧ (𝑦 + 1) = (#‘𝑣)) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))) |
| 123 | 122 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) = (#‘𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 124 | 123 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑦 ∈ ℕ0
∧ 𝑛 ∈ 𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (#‘𝑣) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 125 | 124 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑦 ∈ ℕ0
→ (𝑛 ∈ 𝑣 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (#‘𝑣) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))))) |
| 126 | 125 | com15 101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (𝑛 ∈ 𝑣 → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))))) |
| 127 | 126 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 ∈ 𝑣) → ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝜌 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 128 | 78, 127 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 ∈ 𝑣) → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))) |
| 129 | 128 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (𝑛 ∈ 𝑣 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 130 | 129 | com4l 92 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 ∈ 𝑣 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 131 | 130 | exlimiv 1858 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(∃𝑛 𝑛 ∈ 𝑣 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 132 | 77, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑣 ∈ V ∧ 0 <
(#‘𝑣)) → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 133 | 132 | ex 450 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑣 ∈ V → (0 <
(#‘𝑣) → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 →
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))))) |
| 134 | 133 | com25 99 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑣 ∈ V → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 → (0 <
(#‘𝑣) →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))))) |
| 135 | 76, 134 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 → ((𝑦 + 1) = (#‘𝑣) → (𝑦 ∈ ℕ0 → (0 <
(#‘𝑣) →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))))) |
| 136 | 135 | imp 445 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → (𝑦 ∈ ℕ0 → (0 <
(#‘𝑣) →
(∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)))) |
| 137 | 136 | impcom 446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣))) → (0 < (#‘𝑣) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓))) |
| 138 | 75, 137 | mpd 15 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℕ0
∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣))) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)) |
| 139 | 68, 138 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣))) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → 𝜓)) |
| 140 | 139 | impancom 456 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) ∧ ∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃)) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → 𝜓)) |
| 141 | 140 | alrimivv 1856 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) ∧ ∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃)) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → 𝜓)) |
| 142 | 141 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → (∀𝑤∀𝑓(([𝑤 / 𝑎][𝑓 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑤)) → 𝜃) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → 𝜓))) |
| 143 | 44, 142 | syl5bi 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐿 ≤ 𝑦) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑦 = (#‘𝑣)) → 𝜓) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ (𝑦 + 1) = (#‘𝑣)) → 𝜓))) |
| 144 | 16, 20, 24, 28, 33, 143 | uzind 11469 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐿 ≤ 𝑛) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓)) |
| 145 | 5, 7, 12, 144 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ (((𝐿 ≤ (#‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (#‘𝑉)) → ∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓)) |
| 146 | | sbcex 3445 |
. . . . . . . . . . . . . . . 16
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → 𝑉 ∈ V) |
| 147 | | sbccom 3509 |
. . . . . . . . . . . . . . . . 17
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ↔ [𝐸 / 𝑏][𝑉 / 𝑎]𝜌) |
| 148 | | sbcex 3445 |
. . . . . . . . . . . . . . . . 17
⊢
([𝐸 / 𝑏][𝑉 / 𝑎]𝜌 → 𝐸 ∈ V) |
| 149 | 147, 148 | sylbi 207 |
. . . . . . . . . . . . . . . 16
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → 𝐸 ∈ V) |
| 150 | 146, 149 | jca 554 |
. . . . . . . . . . . . . . 15
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
| 151 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑣 = 𝑉) |
| 152 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → 𝑒 = 𝐸) |
| 153 | 152 | sbceq1d 3440 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ([𝑒 / 𝑏]𝜌 ↔ [𝐸 / 𝑏]𝜌)) |
| 154 | 151, 153 | sbceqbid 3442 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ↔ [𝑉 / 𝑎][𝐸 / 𝑏]𝜌)) |
| 155 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 = 𝑉 → (#‘𝑣) = (#‘𝑉)) |
| 156 | 155 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = 𝑉 → (𝑛 = (#‘𝑣) ↔ 𝑛 = (#‘𝑉))) |
| 157 | 156 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝑛 = (#‘𝑣) ↔ 𝑛 = (#‘𝑉))) |
| 158 | 154, 157 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) ↔ ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)))) |
| 159 | | fi1uzindOLD.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
| 160 | 158, 159 | imbi12d 334 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → ((([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓) ↔ (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → 𝜑))) |
| 161 | 160 | spc2gv 3296 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → 𝜑))) |
| 162 | 161 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) →
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓) → 𝜑))) |
| 163 | 162 | expd 452 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 = (#‘𝑉) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓) → 𝜑)))) |
| 164 | 150, 163 | mpcom 38 |
. . . . . . . . . . . . . 14
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 = (#‘𝑉) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓) → 𝜑))) |
| 165 | 164 | imp 445 |
. . . . . . . . . . . . 13
⊢
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → (∀𝑣∀𝑒(([𝑣 / 𝑎][𝑒 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑣)) → 𝜓) → 𝜑)) |
| 166 | 145, 165 | syl5com 31 |
. . . . . . . . . . . 12
⊢ (((𝐿 ≤ (#‘𝑉) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = (#‘𝑉)) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → 𝜑)) |
| 167 | 166 | exp31 630 |
. . . . . . . . . . 11
⊢ (𝐿 ≤ (#‘𝑉) → (𝑛 ∈ ℕ0 → (𝑛 = (#‘𝑉) → (([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → 𝜑)))) |
| 168 | 167 | com14 96 |
. . . . . . . . . 10
⊢
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑛 = (#‘𝑉)) → (𝑛 ∈ ℕ0 → (𝑛 = (#‘𝑉) → (𝐿 ≤ (#‘𝑉) → 𝜑)))) |
| 169 | 168 | expcom 451 |
. . . . . . . . 9
⊢ (𝑛 = (#‘𝑉) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑛 ∈ ℕ0 → (𝑛 = (#‘𝑉) → (𝐿 ≤ (#‘𝑉) → 𝜑))))) |
| 170 | 169 | com24 95 |
. . . . . . . 8
⊢ (𝑛 = (#‘𝑉) → (𝑛 = (#‘𝑉) → (𝑛 ∈ ℕ0 →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (#‘𝑉) → 𝜑))))) |
| 171 | 170 | pm2.43i 52 |
. . . . . . 7
⊢ (𝑛 = (#‘𝑉) → (𝑛 ∈ ℕ0 →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (#‘𝑉) → 𝜑)))) |
| 172 | 171 | imp 445 |
. . . . . 6
⊢ ((𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (#‘𝑉) → 𝜑))) |
| 173 | 172 | exlimiv 1858 |
. . . . 5
⊢
(∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (#‘𝑉) → 𝜑))) |
| 174 | 2, 173 | sylbi 207 |
. . . 4
⊢
((#‘𝑉) ∈
ℕ0 → ([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (#‘𝑉) → 𝜑))) |
| 175 | 1, 174 | syl 17 |
. . 3
⊢ (𝑉 ∈ Fin →
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝐿 ≤ (#‘𝑉) → 𝜑))) |
| 176 | 175 | com12 32 |
. 2
⊢
([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 → (𝑉 ∈ Fin → (𝐿 ≤ (#‘𝑉) → 𝜑))) |
| 177 | 176 | 3imp 1256 |
1
⊢
(([𝑉 / 𝑎][𝐸 / 𝑏]𝜌 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑) |