| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4.1 | ⊢ 𝐴 ∈ 𝐵 |
| 3eltr4.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 3eltr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | eleqtrri 2700 | . 2 ⊢ 𝐴 ∈ 𝐷 |
| 5 | 1, 4 | eqeltri 2697 | 1 ⊢ 𝐶 ∈ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∈ wcel 1990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
| This theorem is referenced by: oancom 8548 0r 9901 1sr 9902 m1r 9903 recvs 22946 qcvs 22947 wlk2v2elem1 27015 konigsbergiedgw 27108 konigsbergiedgwOLD 27109 lmxrge0 29998 brsigarn 30247 sinccvglem 31566 bj-minftyccb 33112 fouriersw 40448 |
| Copyright terms: Public domain | W3C validator |