MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Visualization version   GIF version

Theorem 3eltr4i 2714
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4.1 𝐴𝐵
3eltr4.2 𝐶 = 𝐴
3eltr4.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4.2 . 2 𝐶 = 𝐴
2 3eltr4.1 . . 3 𝐴𝐵
3 3eltr4.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2700 . 2 𝐴𝐷
51, 4eqeltri 2697 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618
This theorem is referenced by:  oancom  8548  0r  9901  1sr  9902  m1r  9903  recvs  22946  qcvs  22947  wlk2v2elem1  27015  konigsbergiedgw  27108  konigsbergiedgwOLD  27109  lmxrge0  29998  brsigarn  30247  sinccvglem  31566  bj-minftyccb  33112  fouriersw  40448
  Copyright terms: Public domain W3C validator