Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinccvglem Structured version   Visualization version   GIF version

Theorem sinccvglem 31566
Description: ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
sinccvg.1 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
sinccvg.2 (𝜑𝐹 ⇝ 0)
sinccvg.3 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
sinccvg.4 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
sinccvg.5 (𝜑𝑀 ∈ ℕ)
sinccvg.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
Assertion
Ref Expression
sinccvglem (𝜑 → (𝐺𝐹) ⇝ 1)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐻   𝑘,𝑀   𝜑,𝑘   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem sinccvglem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2 (ℤ𝑀) = (ℤ𝑀)
2 sinccvg.5 . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 11481 . 2 (𝜑𝑀 ∈ ℤ)
4 sinccvg.2 . . . 4 (𝜑𝐹 ⇝ 0)
5 sinccvg.4 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
65funmpt2 5927 . . . . 5 Fun 𝐻
7 sinccvg.1 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
8 nnex 11026 . . . . . 6 ℕ ∈ V
9 fex 6490 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ ℕ ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 694 . . . . 5 (𝜑𝐹 ∈ V)
11 cofunexg 7130 . . . . 5 ((Fun 𝐻𝐹 ∈ V) → (𝐻𝐹) ∈ V)
126, 10, 11sylancr 695 . . . 4 (𝜑 → (𝐻𝐹) ∈ V)
137adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶(ℝ ∖ {0}))
14 eluznn 11758 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
152, 14sylan 488 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
1613, 15ffvelrnd 6360 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ (ℝ ∖ {0}))
17 eldifsn 4317 . . . . . . 7 ((𝐹𝑘) ∈ (ℝ ∖ {0}) ↔ ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1816, 17sylib 208 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1918simpld 475 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
2019recnd 10068 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
22 sqcl 12925 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
23 3cn 11095 . . . . . . . 8 3 ∈ ℂ
24 3ne0 11115 . . . . . . . 8 3 ≠ 0
25 divcl 10691 . . . . . . . 8 (((𝑥↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑥↑2) / 3) ∈ ℂ)
2623, 24, 25mp3an23 1416 . . . . . . 7 ((𝑥↑2) ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
2722, 26syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
28 subcl 10280 . . . . . 6 ((1 ∈ ℂ ∧ ((𝑥↑2) / 3) ∈ ℂ) → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
2921, 27, 28sylancr 695 . . . . 5 (𝑥 ∈ ℂ → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
305, 29fmpti 6383 . . . 4 𝐻:ℂ⟶ℂ
31 eqid 2622 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3231cnfldtopon 22586 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3332a1i 11 . . . . . . . 8 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
34 1cnd 10056 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
3533, 33, 34cnmptc 21465 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3631sqcn 22677 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3736a1i 11 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3831divccn 22676 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 3 ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3923, 24, 38mp2an 708 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4039a1i 11 . . . . . . . . 9 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
41 oveq1 6657 . . . . . . . . 9 (𝑦 = (𝑥↑2) → (𝑦 / 3) = ((𝑥↑2) / 3))
4233, 37, 33, 40, 41cnmpt11 21466 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4331subcn 22669 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4443a1i 11 . . . . . . . 8 (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4533, 35, 42, 44cnmpt12f 21469 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4645trud 1493 . . . . . 6 (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4731cncfcn1 22713 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4846, 5, 473eltr4i 2714 . . . . 5 𝐻 ∈ (ℂ–cn→ℂ)
49 cncfi 22697 . . . . 5 ((𝐻 ∈ (ℂ–cn→ℂ) ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
5048, 49mp3an1 1411 . . . 4 ((0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
51 fvco3 6275 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
527, 51sylan 488 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
5315, 52syldan 487 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
541, 4, 12, 3, 20, 30, 50, 53climcn1lem 14333 . . 3 (𝜑 → (𝐻𝐹) ⇝ (𝐻‘0))
55 0cn 10032 . . . 4 0 ∈ ℂ
56 sq0i 12956 . . . . . . . . 9 (𝑥 = 0 → (𝑥↑2) = 0)
5756oveq1d 6665 . . . . . . . 8 (𝑥 = 0 → ((𝑥↑2) / 3) = (0 / 3))
5823, 24div0i 10759 . . . . . . . 8 (0 / 3) = 0
5957, 58syl6eq 2672 . . . . . . 7 (𝑥 = 0 → ((𝑥↑2) / 3) = 0)
6059oveq2d 6666 . . . . . 6 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = (1 − 0))
61 1m0e1 11131 . . . . . 6 (1 − 0) = 1
6260, 61syl6eq 2672 . . . . 5 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = 1)
63 1ex 10035 . . . . 5 1 ∈ V
6462, 5, 63fvmpt 6282 . . . 4 (0 ∈ ℂ → (𝐻‘0) = 1)
6555, 64ax-mp 5 . . 3 (𝐻‘0) = 1
6654, 65syl6breq 4694 . 2 (𝜑 → (𝐻𝐹) ⇝ 1)
67 sinccvg.3 . . . 4 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
6867funmpt2 5927 . . 3 Fun 𝐺
69 cofunexg 7130 . . 3 ((Fun 𝐺𝐹 ∈ V) → (𝐺𝐹) ∈ V)
7068, 10, 69sylancr 695 . 2 (𝜑 → (𝐺𝐹) ∈ V)
71 oveq1 6657 . . . . . . . 8 (𝑥 = (𝐹𝑘) → (𝑥↑2) = ((𝐹𝑘)↑2))
7271oveq1d 6665 . . . . . . 7 (𝑥 = (𝐹𝑘) → ((𝑥↑2) / 3) = (((𝐹𝑘)↑2) / 3))
7372oveq2d 6666 . . . . . 6 (𝑥 = (𝐹𝑘) → (1 − ((𝑥↑2) / 3)) = (1 − (((𝐹𝑘)↑2) / 3)))
74 ovex 6678 . . . . . 6 (1 − (((𝐹𝑘)↑2) / 3)) ∈ V
7573, 5, 74fvmpt 6282 . . . . 5 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7620, 75syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7753, 76eqtrd 2656 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (1 − (((𝐹𝑘)↑2) / 3)))
78 1re 10039 . . . 4 1 ∈ ℝ
7919resqcld 13035 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℝ)
80 3nn 11186 . . . . 5 3 ∈ ℕ
81 nndivre 11056 . . . . 5 ((((𝐹𝑘)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
8279, 80, 81sylancl 694 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
83 resubcl 10345 . . . 4 ((1 ∈ ℝ ∧ (((𝐹𝑘)↑2) / 3) ∈ ℝ) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8478, 82, 83sylancr 695 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8577, 84eqeltrd 2701 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ∈ ℝ)
86 fvco3 6275 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
877, 86sylan 488 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
8815, 87syldan 487 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
89 fveq2 6191 . . . . . . 7 (𝑥 = (𝐹𝑘) → (sin‘𝑥) = (sin‘(𝐹𝑘)))
90 id 22 . . . . . . 7 (𝑥 = (𝐹𝑘) → 𝑥 = (𝐹𝑘))
9189, 90oveq12d 6668 . . . . . 6 (𝑥 = (𝐹𝑘) → ((sin‘𝑥) / 𝑥) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
92 ovex 6678 . . . . . 6 ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ V
9391, 67, 92fvmpt 6282 . . . . 5 ((𝐹𝑘) ∈ (ℝ ∖ {0}) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9416, 93syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9588, 94eqtrd 2656 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9619resincld 14873 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℝ)
9718simprd 479 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≠ 0)
9896, 19, 97redivcld 10853 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ ℝ)
9995, 98eqeltrd 2701 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ∈ ℝ)
100 1cnd 10056 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
10182recnd 10068 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℂ)
10220abscld 14175 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
103102recnd 10068 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
104100, 101, 103subdird 10487 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))))
105103mulid2d 10058 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
106 df-3 11080 . . . . . . . . . . . . 13 3 = (2 + 1)
107106oveq2i 6661 . . . . . . . . . . . 12 ((abs‘(𝐹𝑘))↑3) = ((abs‘(𝐹𝑘))↑(2 + 1))
108 2nn0 11309 . . . . . . . . . . . . . 14 2 ∈ ℕ0
109 expp1 12867 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
110103, 108, 109sylancl 694 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
111 absresq 14042 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℝ → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
11219, 111syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
113112oveq1d 6665 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
114110, 113eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
115107, 114syl5eq 2668 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑3) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
116115oveq1d 6665 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑3) / 3) = ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3))
11779recnd 10068 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℂ)
11823a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ∈ ℂ)
11924a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ≠ 0)
120117, 103, 118, 119div23d 10838 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3) = ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))))
121116, 120eqtr2d 2657 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))) = (((abs‘(𝐹𝑘))↑3) / 3))
122105, 121oveq12d 6668 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
123104, 122eqtrd 2656 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
12420, 97absrpcld 14187 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
125124rpgt0d 11875 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < (abs‘(𝐹𝑘)))
126 sinccvg.6 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
127 ltle 10126 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
128102, 78, 127sylancl 694 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
129126, 128mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ≤ 1)
130 0xr 10086 . . . . . . . . . . 11 0 ∈ ℝ*
131 elioc2 12236 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1)))
132130, 78, 131mp2an 708 . . . . . . . . . 10 ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1))
133102, 125, 129, 132syl3anbrc 1246 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ (0(,]1))
134 sin01bnd 14915 . . . . . . . . 9 ((abs‘(𝐹𝑘)) ∈ (0(,]1) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
135133, 134syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
136135simpld 475 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))))
137123, 136eqbrtrd 4675 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))))
138102resincld 14873 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) ∈ ℝ)
13984, 138, 124ltmuldivd 11919 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))) ↔ (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘)))))
140137, 139mpbid 222 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))))
141 fveq2 6191 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘(𝐹𝑘)))
142 id 22 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (abs‘(𝐹𝑘)) = (𝐹𝑘))
143141, 142oveq12d 6668 . . . . . . 7 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
144143a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
145 sinneg 14876 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
14620, 145syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
147146oveq1d 6665 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)))
14896recnd 10068 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℂ)
149148, 20, 97div2negd 10816 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
150147, 149eqtrd 2656 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
151 fveq2 6191 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘-(𝐹𝑘)))
152 id 22 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (abs‘(𝐹𝑘)) = -(𝐹𝑘))
153151, 152oveq12d 6668 . . . . . . . 8 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)))
154153eqeq1d 2624 . . . . . . 7 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ↔ ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
155150, 154syl5ibrcom 237 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
15619absord 14154 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) ∨ (abs‘(𝐹𝑘)) = -(𝐹𝑘)))
157144, 155, 156mpjaod 396 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
158140, 157breqtrd 4679 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
15984, 98, 158ltled 10185 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ≤ ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
160159, 77, 953brtr4d 4685 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ≤ ((𝐺𝐹)‘𝑘))
16178a1i 11 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
162135simprd 479 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘)))
163103mulid1d 10057 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) · 1) = (abs‘(𝐹𝑘)))
164162, 163breqtrrd 4681 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1))
165138, 161, 124ltdivmuld 11923 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1 ↔ (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1)))
166164, 165mpbird 247 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1)
167157, 166eqbrtrrd 4677 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) < 1)
16898, 161, 167ltled 10185 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ≤ 1)
16995, 168eqbrtrd 4675 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ≤ 1)
1701, 3, 66, 70, 85, 99, 160, 169climsqz 14371 1 (𝜑 → (𝐺𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  {csn 4177   class class class wbr 4653  cmpt 4729  ccom 5118  Fun wfun 5882  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  0cn0 11292  cuz 11687  +crp 11832  (,]cioc 12176  cexp 12860  abscabs 13974  cli 14215  sincsin 14794  TopOpenctopn 16082  fldccnfld 19746  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681
This theorem is referenced by:  sinccvg  31567
  Copyright terms: Public domain W3C validator