| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3jaao | Structured version Visualization version GIF version | ||
| Description: Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| Ref | Expression |
|---|---|
| 3jaao.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3jaao.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
| 3jaao.3 | ⊢ (𝜂 → (𝜁 → 𝜒)) |
| Ref | Expression |
|---|---|
| 3jaao | ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaao.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | 3ad2ant1 1082 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 → 𝜒)) |
| 3 | 3jaao.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
| 4 | 3 | 3ad2ant2 1083 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜏 → 𝜒)) |
| 5 | 3jaao.3 | . . 3 ⊢ (𝜂 → (𝜁 → 𝜒)) | |
| 6 | 5 | 3ad2ant3 1084 | . 2 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜁 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaod 1392 | 1 ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1036 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 |
| This theorem is referenced by: lpni 27332 3ornot23 38715 |
| Copyright terms: Public domain | W3C validator |