![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjao3dan | Structured version Visualization version GIF version |
Description: Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 826 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 1038 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 208 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 827 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 ∨ w3o 1036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 |
This theorem is referenced by: wemaplem2 8452 r1val1 8649 xleadd1a 12083 xlt2add 12090 xmullem 12094 xmulgt0 12113 xmulasslem3 12116 xlemul1a 12118 xadddilem 12124 xadddi 12125 xadddi2 12127 isxmet2d 22132 icccvx 22749 ivthicc 23227 mbfmulc2lem 23414 c1lip1 23760 dvivth 23773 reeff1o 24201 coseq00topi 24254 tanabsge 24258 logcnlem3 24390 atantan 24650 atanbnd 24653 cvxcl 24711 ostthlem1 25316 iscgrglt 25409 tgdim01ln 25459 lnxfr 25461 lnext 25462 tgfscgr 25463 tglineeltr 25526 colmid 25583 prodtp 29573 xrpxdivcld 29643 archirngz 29743 archiabllem1b 29746 esumcst 30125 sgnmulsgn 30611 sgnmulsgp 30612 hgt750lemb 30734 fnwe2lem3 37622 |
Copyright terms: Public domain | W3C validator |