| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orcoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| 3orcoma | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or12 545 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 2 | 3orass 1040 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 3orass 1040 | . 2 ⊢ ((𝜓 ∨ 𝜑 ∨ 𝜒) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 4 | 1, 2, 3 | 3bitr4i 292 | 1 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜑 ∨ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∨ wo 383 ∨ w3o 1036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 |
| This theorem is referenced by: outpasch 25647 eliccioo 29639 |
| Copyright terms: Public domain | W3C validator |