![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 466 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | anbi1i 731 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜒)) |
3 | df-3an 1039 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | df-3an 1039 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜒)) | |
5 | 2, 3, 4 | 3bitr4i 292 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: 3ancomb 1047 3anrev 1049 3anan12 1051 3com12 1269 cadcomb 1552 f13dfv 6530 suppssfifsupp 8290 elfzmlbp 12450 elfzo2 12473 pythagtriplem2 15522 pythagtrip 15539 xpsfrnel 16223 fucinv 16633 setcinv 16740 xrsdsreclb 19793 ordthaus 21188 regr1lem2 21543 xmetrtri2 22161 clmvscom 22890 hlcomb 25498 nb3grpr2 26285 nb3gr2nb 26286 rusgrnumwwlkslem 26864 ablomuldiv 27406 nvscom 27484 cnvadj 28751 iocinif 29543 fzto1st 29853 psgnfzto1st 29855 bnj312 30778 cgr3permute1 32155 lineext 32183 colinbtwnle 32225 outsideofcom 32235 linecom 32257 linerflx2 32258 eldmqsres 34051 cdlemg33d 35997 uunT12p3 39029 rngcinv 41981 rngcinvALTV 41993 ringcinv 42032 ringcinvALTV 42056 |
Copyright terms: Public domain | W3C validator |