| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3orel2 | Structured version Visualization version GIF version | ||
| Description: Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3orel2 | ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3orrot 1044 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒 ∨ 𝜑)) | |
| 2 | 3orel1 1041 | . . 3 ⊢ (¬ 𝜓 → ((𝜓 ∨ 𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜑))) | |
| 3 | orcom 402 | . . 3 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜑 ∨ 𝜒)) | |
| 4 | 2, 3 | syl6ib 241 | . 2 ⊢ (¬ 𝜓 → ((𝜓 ∨ 𝜒 ∨ 𝜑) → (𝜑 ∨ 𝜒))) |
| 5 | 1, 4 | syl5bi 232 | 1 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∨ w3o 1036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 |
| This theorem is referenced by: nosep1o 31832 nosupbnd1lem5 31858 |
| Copyright terms: Public domain | W3C validator |