Step | Hyp | Ref
| Expression |
1 | | nosupbnd1.1 |
. . . . . . . 8
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
2 | 1 | nosupno 31849 |
. . . . . . 7
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
3 | 2 | 3ad2ant2 1083 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑆 ∈ No
) |
4 | 3 | adantl 482 |
. . . . 5
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑆 ∈ No
) |
5 | | nodmord 31806 |
. . . . 5
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
6 | | ordirr 5741 |
. . . . 5
⊢ (Ord dom
𝑆 → ¬ dom 𝑆 ∈ dom 𝑆) |
7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ dom 𝑆 ∈ dom 𝑆) |
8 | | simpr3l 1122 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → 𝑈 ∈ 𝐴) |
9 | 8 | adantr 481 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → 𝑈 ∈ 𝐴) |
10 | | ndmfv 6218 |
. . . . . . . . 9
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → (𝑈‘dom 𝑆) = ∅) |
11 | | 1on 7567 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ On |
12 | 11 | elexi 3213 |
. . . . . . . . . . . . 13
⊢
1𝑜 ∈ V |
13 | 12 | prid1 4297 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ {1𝑜,
2𝑜} |
14 | 13 | nosgnn0i 31812 |
. . . . . . . . . . 11
⊢ ∅
≠ 1𝑜 |
15 | | neeq1 2856 |
. . . . . . . . . . 11
⊢ ((𝑈‘dom 𝑆) = ∅ → ((𝑈‘dom 𝑆) ≠ 1𝑜 ↔ ∅
≠ 1𝑜)) |
16 | 14, 15 | mpbiri 248 |
. . . . . . . . . 10
⊢ ((𝑈‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠
1𝑜) |
17 | 16 | neneqd 2799 |
. . . . . . . . 9
⊢ ((𝑈‘dom 𝑆) = ∅ → ¬ (𝑈‘dom 𝑆) = 1𝑜) |
18 | 10, 17 | syl 17 |
. . . . . . . 8
⊢ (¬
dom 𝑆 ∈ dom 𝑈 → ¬ (𝑈‘dom 𝑆) = 1𝑜) |
19 | 18 | con4i 113 |
. . . . . . 7
⊢ ((𝑈‘dom 𝑆) = 1𝑜 → dom 𝑆 ∈ dom 𝑈) |
20 | 19 | adantl 482 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → dom 𝑆 ∈ dom 𝑈) |
21 | | simp2l 1087 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝐴 ⊆ No
) |
22 | | simp3l 1089 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ 𝐴) |
23 | 21, 22 | sseldd 3604 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → 𝑈 ∈ No
) |
24 | 23 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) → 𝑈 ∈
No ) |
25 | 24 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → 𝑈 ∈
No ) |
26 | | nofun 31802 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈
No → Fun 𝑈) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → Fun 𝑈) |
28 | | simpl2l 1114 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) → 𝐴 ⊆
No ) |
29 | | simpll 790 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜) → 𝑧 ∈ 𝐴) |
30 | | ssel2 3598 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ⊆
No ∧ 𝑧 ∈
𝐴) → 𝑧 ∈
No ) |
31 | 28, 29, 30 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → 𝑧 ∈
No ) |
32 | | nofun 31802 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
No → Fun 𝑧) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → Fun 𝑧) |
34 | | simpl3r 1117 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) → (𝑈 ↾ dom 𝑆) = 𝑆) |
35 | 34 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑈 ↾ dom 𝑆) = 𝑆) |
36 | | simpll1 1100 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → ¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
37 | | simpll2 1101 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝐴 ⊆
No ∧ 𝐴 ∈
V)) |
38 | | simpll3 1102 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
39 | | simprl 794 |
. . . . . . . . . . . . . . 15
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) |
40 | 1 | nosupbnd1lem2 31855 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
((𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈))) → (𝑧 ↾ dom 𝑆) = 𝑆) |
41 | 36, 37, 38, 39, 40 | syl112anc 1330 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑧 ↾ dom 𝑆) = 𝑆) |
42 | 35, 41 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆)) |
43 | 19 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) → dom 𝑆 ∈ dom 𝑈) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → dom 𝑆 ∈ dom 𝑈) |
45 | | ndmfv 6218 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
dom 𝑆 ∈ dom 𝑧 → (𝑧‘dom 𝑆) = ∅) |
46 | | neeq1 2856 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧‘dom 𝑆) = ∅ → ((𝑧‘dom 𝑆) ≠ 1𝑜 ↔ ∅
≠ 1𝑜)) |
47 | 14, 46 | mpbiri 248 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧‘dom 𝑆) = ∅ → (𝑧‘dom 𝑆) ≠
1𝑜) |
48 | 47 | neneqd 2799 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧‘dom 𝑆) = ∅ → ¬ (𝑧‘dom 𝑆) = 1𝑜) |
49 | 45, 48 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (¬
dom 𝑆 ∈ dom 𝑧 → ¬ (𝑧‘dom 𝑆) = 1𝑜) |
50 | 49 | con4i 113 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧‘dom 𝑆) = 1𝑜 → dom 𝑆 ∈ dom 𝑧) |
51 | 50 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜) → dom 𝑆 ∈ dom 𝑧) |
52 | 51 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → dom 𝑆 ∈ dom 𝑧) |
53 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑈‘dom 𝑆) = 1𝑜) |
54 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑧‘dom 𝑆) = 1𝑜) |
55 | 53, 54 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆)) |
56 | | eqfunressuc 31660 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝑈 ∧ Fun 𝑧) ∧ (𝑈 ↾ dom 𝑆) = (𝑧 ↾ dom 𝑆) ∧ (dom 𝑆 ∈ dom 𝑈 ∧ dom 𝑆 ∈ dom 𝑧 ∧ (𝑈‘dom 𝑆) = (𝑧‘dom 𝑆))) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) |
57 | 27, 33, 42, 44, 52, 55, 56 | syl213anc 1345 |
. . . . . . . . . . . 12
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ (𝑧‘dom 𝑆) = 1𝑜)) → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) |
58 | 57 | expr 643 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 1𝑜 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
59 | 58 | expr 643 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ 𝑧 ∈ 𝐴) → (¬ 𝑧 <s 𝑈 → ((𝑧‘dom 𝑆) = 1𝑜 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
60 | 59 | a2d 29 |
. . . . . . . . 9
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) ∧ 𝑧 ∈ 𝐴) → ((¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) → (¬
𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
61 | 60 | ralimdva 2962 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜) →
(∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) →
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
62 | 61 | impcom 446 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑈‘dom 𝑆) = 1𝑜)) →
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
63 | 62 | anassrs 680 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) →
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
64 | | dmeq 5324 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → dom 𝑝 = dom 𝑈) |
65 | 64 | eleq2d 2687 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → (dom 𝑆 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑈)) |
66 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → (𝑧 <s 𝑝 ↔ 𝑧 <s 𝑈)) |
67 | 66 | notbid 308 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → (¬ 𝑧 <s 𝑝 ↔ ¬ 𝑧 <s 𝑈)) |
68 | | reseq1 5390 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑈 → (𝑝 ↾ suc dom 𝑆) = (𝑈 ↾ suc dom 𝑆)) |
69 | 68 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑈 → ((𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆) ↔ (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
70 | 67, 69 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑝 = 𝑈 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
71 | 70 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑝 = 𝑈 → (∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)) ↔ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
72 | 65, 71 | anbi12d 747 |
. . . . . . 7
⊢ (𝑝 = 𝑈 → ((dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) ↔ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
73 | 72 | rspcev 3309 |
. . . . . 6
⊢ ((𝑈 ∈ 𝐴 ∧ (dom 𝑆 ∈ dom 𝑈 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑈 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) → ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
74 | 9, 20, 63, 73 | syl12anc 1324 |
. . . . 5
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) →
∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
75 | | simplr1 1103 |
. . . . . . 7
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → ¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
76 | 1 | nosupdm 31850 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))}) |
77 | 76 | eleq2d 2687 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})) |
78 | 75, 77 | syl 17 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → (dom 𝑆 ∈ dom 𝑆 ↔ dom 𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))})) |
79 | 4 | adantr 481 |
. . . . . . 7
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → 𝑆 ∈
No ) |
80 | | nodmon 31803 |
. . . . . . 7
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
81 | | eleq1 2689 |
. . . . . . . . . 10
⊢ (𝑎 = dom 𝑆 → (𝑎 ∈ dom 𝑝 ↔ dom 𝑆 ∈ dom 𝑝)) |
82 | | suceq 5790 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = dom 𝑆 → suc 𝑎 = suc dom 𝑆) |
83 | 82 | reseq2d 5396 |
. . . . . . . . . . . . 13
⊢ (𝑎 = dom 𝑆 → (𝑝 ↾ suc 𝑎) = (𝑝 ↾ suc dom 𝑆)) |
84 | 82 | reseq2d 5396 |
. . . . . . . . . . . . 13
⊢ (𝑎 = dom 𝑆 → (𝑧 ↾ suc 𝑎) = (𝑧 ↾ suc dom 𝑆)) |
85 | 83, 84 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (𝑎 = dom 𝑆 → ((𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎) ↔ (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))) |
86 | 85 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑎 = dom 𝑆 → ((¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
87 | 86 | ralbidv 2986 |
. . . . . . . . . 10
⊢ (𝑎 = dom 𝑆 → (∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)) ↔ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆)))) |
88 | 81, 87 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑎 = dom 𝑆 → ((𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
89 | 88 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑎 = dom 𝑆 → (∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎))) ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
90 | 89 | elabg 3351 |
. . . . . . 7
⊢ (dom
𝑆 ∈ On → (dom
𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
91 | 79, 80, 90 | 3syl 18 |
. . . . . 6
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → (dom 𝑆 ∈ {𝑎 ∣ ∃𝑝 ∈ 𝐴 (𝑎 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc 𝑎) = (𝑧 ↾ suc 𝑎)))} ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
92 | 78, 91 | bitrd 268 |
. . . . 5
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → (dom 𝑆 ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (dom 𝑆 ∈ dom 𝑝 ∧ ∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑝 → (𝑝 ↾ suc dom 𝑆) = (𝑧 ↾ suc dom 𝑆))))) |
93 | 74, 92 | mpbird 247 |
. . . 4
⊢
(((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) ∧ (𝑈‘dom 𝑆) = 1𝑜) → dom 𝑆 ∈ dom 𝑆) |
94 | 7, 93 | mtand 691 |
. . 3
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → ¬ (𝑈‘dom 𝑆) = 1𝑜) |
95 | 94 | neqned 2801 |
. 2
⊢
((∀𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠
1𝑜) |
96 | | rexanali 2998 |
. . 3
⊢
(∃𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1𝑜) ↔ ¬
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜)) |
97 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) → 𝑧 ∈ 𝐴) |
98 | 21, 97, 30 | syl2an 494 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 ∈ No
) |
99 | | nofv 31810 |
. . . . . . . . . 10
⊢ (𝑧 ∈
No → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1𝑜 ∨ (𝑧‘dom 𝑆) = 2𝑜)) |
100 | 98, 99 | syl 17 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1𝑜 ∨ (𝑧‘dom 𝑆) = 2𝑜)) |
101 | | 3orel2 31592 |
. . . . . . . . 9
⊢ (¬
(𝑧‘dom 𝑆) = 1𝑜 →
(((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 1𝑜 ∨ (𝑧‘dom 𝑆) = 2𝑜) → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) =
2𝑜))) |
102 | 100, 101 | syl5com 31 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (¬ (𝑧‘dom 𝑆) = 1𝑜 → ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) =
2𝑜))) |
103 | 102 | imdistanda 729 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1𝑜) → ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) =
2𝑜)))) |
104 | | simpl1 1064 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
105 | | simpl2 1065 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
106 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → 𝑧 ∈ 𝐴) |
107 | | simpl3 1066 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) |
108 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) |
109 | 104, 105,
107, 108, 40 | syl112anc 1330 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧 ↾ dom 𝑆) = 𝑆) |
110 | 1 | nosupbnd1lem4 31857 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑧 ∈ 𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠ ∅) |
111 | 104, 105,
106, 109, 110 | syl112anc 1330 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠ ∅) |
112 | 111 | neneqd 2799 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = ∅) |
113 | 112 | pm2.21d 118 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = ∅ → (𝑈‘dom 𝑆) ≠
1𝑜)) |
114 | 1 | nosupbnd1lem3 31856 |
. . . . . . . . . . . 12
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑧 ∈ 𝐴 ∧ (𝑧 ↾ dom 𝑆) = 𝑆)) → (𝑧‘dom 𝑆) ≠
2𝑜) |
115 | 104, 105,
106, 109, 114 | syl112anc 1330 |
. . . . . . . . . . 11
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (𝑧‘dom 𝑆) ≠
2𝑜) |
116 | 115 | neneqd 2799 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ¬ (𝑧‘dom 𝑆) = 2𝑜) |
117 | 116 | pm2.21d 118 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → ((𝑧‘dom 𝑆) = 2𝑜 → (𝑈‘dom 𝑆) ≠
1𝑜)) |
118 | 113, 117 | jaod 395 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) ∧ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈)) → (((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2𝑜) → (𝑈‘dom 𝑆) ≠
1𝑜)) |
119 | 118 | expimpd 629 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ((𝑧‘dom 𝑆) = ∅ ∨ (𝑧‘dom 𝑆) = 2𝑜)) → (𝑈‘dom 𝑆) ≠
1𝑜)) |
120 | 103, 119 | syldc 48 |
. . . . . 6
⊢ (((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 <s 𝑈) ∧ ¬ (𝑧‘dom 𝑆) = 1𝑜) → ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠
1𝑜)) |
121 | 120 | anasss 679 |
. . . . 5
⊢ ((𝑧 ∈ 𝐴 ∧ (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1𝑜)) → ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠
1𝑜)) |
122 | 121 | rexlimiva 3028 |
. . . 4
⊢
(∃𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1𝑜) → ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠
1𝑜)) |
123 | 122 | imp 445 |
. . 3
⊢
((∃𝑧 ∈
𝐴 (¬ 𝑧 <s 𝑈 ∧ ¬ (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠
1𝑜) |
124 | 96, 123 | sylanbr 490 |
. 2
⊢ ((¬
∀𝑧 ∈ 𝐴 (¬ 𝑧 <s 𝑈 → (𝑧‘dom 𝑆) = 1𝑜) ∧ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆))) → (𝑈‘dom 𝑆) ≠
1𝑜) |
125 | 95, 124 | pm2.61ian 831 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑈 ∈ 𝐴 ∧ (𝑈 ↾ dom 𝑆) = 𝑆)) → (𝑈‘dom 𝑆) ≠
1𝑜) |