| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4an4132 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.) |
| Ref | Expression |
|---|---|
| 4an4132.1 | ⊢ ((((𝜃 ∧ 𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏) |
| Ref | Expression |
|---|---|
| 4an4132 | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜃) | |
| 2 | simplr 792 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | jca 554 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → (𝜃 ∧ 𝜒)) |
| 4 | simpllr 799 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 5 | simplll 798 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑) | |
| 6 | 4an4132.1 | . 2 ⊢ ((((𝜃 ∧ 𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏) | |
| 7 | 3, 4, 5, 6 | syl21anc 1325 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: sineq0ALT 39173 |
| Copyright terms: Public domain | W3C validator |