Proof of Theorem sineq0ALT
| Step | Hyp | Ref
| Expression |
| 1 | | pire 24210 |
. . . . 5
⊢ π
∈ ℝ |
| 2 | | pipos 24212 |
. . . . 5
⊢ 0 <
π |
| 3 | 1, 2 | elrpii 11835 |
. . . 4
⊢ π
∈ ℝ+ |
| 4 | | 2ne0 11113 |
. . . . . 6
⊢ 2 ≠
0 |
| 5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 2
≠ 0) |
| 6 | | 2cn 11091 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 7 | | 2re 11090 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 8 | 7 | a1i 11 |
. . . . . . 7
⊢ (2 ∈
ℂ → 2 ∈ ℝ) |
| 9 | 6, 8 | ax-mp 5 |
. . . . . 6
⊢ 2 ∈
ℝ |
| 10 | 9 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 2
∈ ℝ) |
| 11 | | id 22 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
| 12 | 11 | adantr 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
𝐴 ∈
ℂ) |
| 13 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → 2 ∈
ℂ) |
| 14 | 13, 11 | mulcld 10060 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (2
· 𝐴) ∈
ℂ) |
| 15 | | ax-icn 9995 |
. . . . . . . . . . . . . . 15
⊢ i ∈
ℂ |
| 16 | 15 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → i ∈
ℂ) |
| 17 | 13, 16, 11 | mul12d 10245 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (2
· (i · 𝐴)) =
(i · (2 · 𝐴))) |
| 18 | 16, 11 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) ∈
ℂ) |
| 19 | 18 | 2timesd 11275 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (2
· (i · 𝐴)) =
((i · 𝐴) + (i
· 𝐴))) |
| 20 | 17, 19 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (i
· (2 · 𝐴)) =
((i · 𝐴) + (i
· 𝐴))) |
| 21 | 20 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (2 · 𝐴))) = (exp‘((i · 𝐴) + (i · 𝐴)))) |
| 22 | | efadd 14824 |
. . . . . . . . . . . 12
⊢ (((i
· 𝐴) ∈ ℂ
∧ (i · 𝐴) ∈
ℂ) → (exp‘((i · 𝐴) + (i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐴)))) |
| 23 | 18, 18, 22 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(exp‘((i · 𝐴)
+ (i · 𝐴))) =
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴)))) |
| 24 | 21, 23 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐴)))) |
| 25 | 24 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘(i · (2 · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(i
· 𝐴)))) |
| 26 | | sinval 14852 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
(sin‘𝐴) =
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 ·
i))) |
| 27 | | id 22 |
. . . . . . . . . . . . . . 15
⊢
((sin‘𝐴) = 0
→ (sin‘𝐴) =
0) |
| 28 | 26, 27 | sylan9req 2677 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) =
0) |
| 29 | | efcl 14813 |
. . . . . . . . . . . . . . . . . 18
⊢ ((i
· 𝐴) ∈ ℂ
→ (exp‘(i · 𝐴)) ∈ ℂ) |
| 30 | 18, 29 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
∈ ℂ) |
| 31 | | negicn 10282 |
. . . . . . . . . . . . . . . . . . . 20
⊢ -i ∈
ℂ |
| 32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ → -i ∈
ℂ) |
| 33 | 32, 11 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℂ → (-i
· 𝐴) ∈
ℂ) |
| 34 | | efcl 14813 |
. . . . . . . . . . . . . . . . . 18
⊢ ((-i
· 𝐴) ∈ ℂ
→ (exp‘(-i · 𝐴)) ∈ ℂ) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(exp‘(-i · 𝐴))
∈ ℂ) |
| 36 | 30, 35 | subcld 10392 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) ∈ ℂ) |
| 37 | | 2mulicn 11255 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· i) ∈ ℂ |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (2
· i) ∈ ℂ) |
| 39 | | 2muline0 11256 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· i) ≠ 0 |
| 40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ℂ → (2
· i) ≠ 0) |
| 41 | 36, 38, 40 | diveq0ad 10811 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℂ →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) = 0)) |
| 42 | 41 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) / (2 · i)) = 0 ↔
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) = 0)) |
| 43 | 28, 42 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
− (exp‘(-i · 𝐴))) = 0) |
| 44 | 30, 35 | subeq0ad 10402 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i
· 𝐴)) =
(exp‘(-i · 𝐴)))) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(((exp‘(i · 𝐴)) − (exp‘(-i · 𝐴))) = 0 ↔ (exp‘(i
· 𝐴)) =
(exp‘(-i · 𝐴)))) |
| 46 | 43, 45 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘(i · 𝐴))
= (exp‘(-i · 𝐴))) |
| 47 | 46 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i
· 𝐴)))) |
| 48 | | efadd 14824 |
. . . . . . . . . . . . 13
⊢ (((i
· 𝐴) ∈ ℂ
∧ (-i · 𝐴)
∈ ℂ) → (exp‘((i · 𝐴) + (-i · 𝐴))) = ((exp‘(i · 𝐴)) · (exp‘(-i
· 𝐴)))) |
| 49 | 18, 33, 48 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
((exp‘(i · 𝐴))
· (exp‘(-i · 𝐴)))) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
((exp‘(i · 𝐴))
· (exp‘(-i · 𝐴)))) |
| 51 | 47, 50 | eqtr4d 2659 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴))) = (exp‘((i · 𝐴) + (-i · 𝐴)))) |
| 52 | 15 | negidi 10350 |
. . . . . . . . . . . . . . 15
⊢ (i + -i)
= 0 |
| 53 | 52 | oveq1i 6660 |
. . . . . . . . . . . . . 14
⊢ ((i + -i)
· 𝐴) = (0 ·
𝐴) |
| 54 | 16, 32, 11 | adddird 10065 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℂ → ((i + -i)
· 𝐴) = ((i ·
𝐴) + (-i · 𝐴))) |
| 55 | 53, 54 | syl5reqr 2671 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → ((i
· 𝐴) + (-i ·
𝐴)) = (0 · 𝐴)) |
| 56 | 11 | mul02d 10234 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℂ → (0
· 𝐴) =
0) |
| 57 | 55, 56 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → ((i
· 𝐴) + (-i ·
𝐴)) = 0) |
| 58 | 57 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
(exp‘0)) |
| 59 | 58 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘((i · 𝐴)
+ (-i · 𝐴))) =
(exp‘0)) |
| 60 | | ef0 14821 |
. . . . . . . . . . 11
⊢
(exp‘0) = 1 |
| 61 | 60 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘0) = 1) |
| 62 | 51, 59, 61 | 3eqtrd 2660 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((exp‘(i · 𝐴))
· (exp‘(i · 𝐴))) = 1) |
| 63 | 25, 62 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(exp‘(i · (2 · 𝐴))) = 1) |
| 64 | 63 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(exp‘(i · (2 · 𝐴)))) = (abs‘1)) |
| 65 | | abs1 14037 |
. . . . . . 7
⊢
(abs‘1) = 1 |
| 66 | 64, 65 | syl6eq 2672 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(exp‘(i · (2 · 𝐴)))) = 1) |
| 67 | | absefib 14928 |
. . . . . . . 8
⊢ ((2
· 𝐴) ∈ ℂ
→ ((2 · 𝐴)
∈ ℝ ↔ (abs‘(exp‘(i · (2 · 𝐴)))) = 1)) |
| 68 | 67 | biimparc 504 |
. . . . . . 7
⊢
(((abs‘(exp‘(i · (2 · 𝐴)))) = 1 ∧ (2 · 𝐴) ∈ ℂ) → (2 · 𝐴) ∈
ℝ) |
| 69 | 68 | ancoms 469 |
. . . . . 6
⊢ (((2
· 𝐴) ∈ ℂ
∧ (abs‘(exp‘(i · (2 · 𝐴)))) = 1) → (2 · 𝐴) ∈
ℝ) |
| 70 | 14, 66, 69 | syl2an2r 876 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(2 · 𝐴) ∈
ℝ) |
| 71 | | mulre 13861 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℝ ∧ 2 ≠ 0) → (𝐴 ∈ ℝ ↔ (2 · 𝐴) ∈
ℝ)) |
| 72 | 71 | 4animp1 38703 |
. . . . . 6
⊢ ((((𝐴 ∈ ℂ ∧ 2 ∈
ℝ) ∧ 2 ≠ 0) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈ ℝ) |
| 73 | 72 | 4an31 38704 |
. . . . 5
⊢ ((((2
≠ 0 ∧ 2 ∈ ℝ) ∧ 𝐴 ∈ ℂ) ∧ (2 · 𝐴) ∈ ℝ) → 𝐴 ∈
ℝ) |
| 74 | 5, 10, 12, 70, 73 | eel1111 38947 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
𝐴 ∈
ℝ) |
| 75 | 3 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ∈ ℝ+) |
| 76 | 74, 75 | modcld 12674 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) ∈
ℝ) |
| 77 | 76 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) ∈
ℂ) |
| 78 | 77 | sincld 14860 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(sin‘(𝐴 mod π))
∈ ℂ) |
| 79 | 1 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ∈ ℝ) |
| 80 | | 0re 10040 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℝ |
| 81 | 80, 1, 2 | ltleii 10160 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
π |
| 82 | | gt0ne0 10493 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((π
∈ ℝ ∧ 0 < π) → π ≠ 0) |
| 83 | 82 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((π
∈ ℝ ∧ 0 < π ∧ 0 ≤ π) → π ≠
0) |
| 84 | 83 | 3com23 1271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((π
∈ ℝ ∧ 0 ≤ π ∧ 0 < π) → π ≠
0) |
| 85 | 1, 81, 2, 84 | mp3an 1424 |
. . . . . . . . . . . . . . . . . . . 20
⊢ π ≠
0 |
| 86 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ≠ 0) |
| 87 | 74, 79, 86 | redivcld 10853 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 / π) ∈
ℝ) |
| 88 | 87 | flcld 12599 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(⌊‘(𝐴 / π))
∈ ℤ) |
| 89 | 88 | znegcld 11484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-(⌊‘(𝐴 / π))
∈ ℤ) |
| 90 | | abssinper 24270 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
-(⌊‘(𝐴 / π))
∈ ℤ) → (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) · π)))) =
(abs‘(sin‘𝐴))) |
| 91 | 90 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
-(⌊‘(𝐴 / π))
∈ ℤ) → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) ·
π))))) |
| 92 | 91 | ex 450 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℂ →
(-(⌊‘(𝐴 /
π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) ·
π)))))) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) ∈ ℤ → (abs‘(sin‘𝐴)) = (abs‘(sin‘(𝐴 + (-(⌊‘(𝐴 / π)) ·
π)))))) |
| 94 | 89, 93 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
(abs‘(sin‘(𝐴 +
(-(⌊‘(𝐴 /
π)) · π))))) |
| 95 | 88 | zcnd 11483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(⌊‘(𝐴 / π))
∈ ℂ) |
| 96 | 95 | negcld 10379 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-(⌊‘(𝐴 / π))
∈ ℂ) |
| 97 | 1 | recni 10052 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ π
∈ ℂ |
| 98 | 97 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
π ∈ ℂ) |
| 99 | 96, 98 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) · π) ∈ ℂ) |
| 100 | 98, 95 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(π · (⌊‘(𝐴 / π))) ∈ ℂ) |
| 101 | 100 | negcld 10379 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-(π · (⌊‘(𝐴 / π))) ∈ ℂ) |
| 102 | 95, 98 | mulneg1d 10483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) · π) = -((⌊‘(𝐴 / π)) · π)) |
| 103 | 95, 98 | mulcomd 10061 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((⌊‘(𝐴 / π))
· π) = (π · (⌊‘(𝐴 / π)))) |
| 104 | 103 | negeqd 10275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
-((⌊‘(𝐴 /
π)) · π) = -(π · (⌊‘(𝐴 / π)))) |
| 105 | 102, 104 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(-(⌊‘(𝐴 /
π)) · π) = -(π · (⌊‘(𝐴 / π)))) |
| 106 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((-(⌊‘(𝐴
/ π)) · π) = -(π · (⌊‘(𝐴 / π))) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π ·
(⌊‘(𝐴 /
π))))) |
| 107 | 106 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((-(⌊‘(𝐴 / π)) · π) = -(π ·
(⌊‘(𝐴 / π)))
∧ -(π · (⌊‘(𝐴 / π))) ∈ ℂ) ∧
(-(⌊‘(𝐴 /
π)) · π) ∈ ℂ) ∧ 𝐴 ∈ ℂ) → (𝐴 + (-(⌊‘(𝐴 / π)) · π)) = (𝐴 + -(π ·
(⌊‘(𝐴 /
π))))) |
| 108 | 107 | 4an4132 38705 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℂ ∧
(-(⌊‘(𝐴 /
π)) · π) ∈ ℂ) ∧ -(π ·
(⌊‘(𝐴 / π)))
∈ ℂ) ∧ (-(⌊‘(𝐴 / π)) · π) = -(π ·
(⌊‘(𝐴 /
π)))) → (𝐴 +
(-(⌊‘(𝐴 /
π)) · π)) = (𝐴
+ -(π · (⌊‘(𝐴 / π))))) |
| 109 | 12, 99, 101, 105, 108 | eel1111 38947 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 +
(-(⌊‘(𝐴 /
π)) · π)) = (𝐴
+ -(π · (⌊‘(𝐴 / π))))) |
| 110 | 12, 100 | negsubd 10398 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 + -(π ·
(⌊‘(𝐴 /
π)))) = (𝐴 − (π
· (⌊‘(𝐴
/ π))))) |
| 111 | 109, 110 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 +
(-(⌊‘(𝐴 /
π)) · π)) = (𝐴
− (π · (⌊‘(𝐴 / π))))) |
| 112 | 111 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(sin‘(𝐴 +
(-(⌊‘(𝐴 /
π)) · π))) = (sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π)))))) |
| 113 | 112 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘(𝐴 +
(-(⌊‘(𝐴 /
π)) · π)))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
| 114 | 94, 113 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
(abs‘(sin‘(𝐴
− (π · (⌊‘(𝐴 / π))))))) |
| 115 | | modval 12670 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (𝐴 mod π) = (𝐴 − (π ·
(⌊‘(𝐴 /
π))))) |
| 116 | 115 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (sin‘(𝐴 mod π)) = (sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π)))))) |
| 117 | 116 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (abs‘(sin‘(𝐴 mod π))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
| 118 | 3, 117 | mpan2 707 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℝ →
(abs‘(sin‘(𝐴
mod π))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
| 119 | 74, 118 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘(𝐴
mod π))) = (abs‘(sin‘(𝐴 − (π ·
(⌊‘(𝐴 /
π))))))) |
| 120 | 114, 119 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
(abs‘(sin‘(𝐴
mod π)))) |
| 121 | 27 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢
((sin‘𝐴) = 0
→ (abs‘(sin‘𝐴)) = (abs‘0)) |
| 122 | | abs0 14025 |
. . . . . . . . . . . . . . 15
⊢
(abs‘0) = 0 |
| 123 | 121, 122 | syl6eq 2672 |
. . . . . . . . . . . . . 14
⊢
((sin‘𝐴) = 0
→ (abs‘(sin‘𝐴)) = 0) |
| 124 | 123 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘𝐴)) =
0) |
| 125 | 120, 124 | eqtr3d 2658 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(abs‘(sin‘(𝐴
mod π))) = 0) |
| 126 | 78, 125 | abs00d 14185 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(sin‘(𝐴 mod π)) =
0) |
| 127 | | notnotb 304 |
. . . . . . . . . . . . 13
⊢
((sin‘(𝐴 mod
π)) = 0 ↔ ¬ ¬ (sin‘(𝐴 mod π)) = 0) |
| 128 | 127 | bicomi 214 |
. . . . . . . . . . . 12
⊢ (¬
¬ (sin‘(𝐴 mod
π)) = 0 ↔ (sin‘(𝐴 mod π)) = 0) |
| 129 | | ltne 10134 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → (sin‘(𝐴 mod π)) ≠
0) |
| 130 | 129 | neneqd 2799 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ 0 < (sin‘(𝐴 mod π))) → ¬ (sin‘(𝐴 mod π)) =
0) |
| 131 | 130 | expcom 451 |
. . . . . . . . . . . . . 14
⊢ (0 <
(sin‘(𝐴 mod π))
→ (0 ∈ ℝ → ¬ (sin‘(𝐴 mod π)) = 0)) |
| 132 | 80, 131 | mpi 20 |
. . . . . . . . . . . . 13
⊢ (0 <
(sin‘(𝐴 mod π))
→ ¬ (sin‘(𝐴
mod π)) = 0) |
| 133 | 132 | con3i 150 |
. . . . . . . . . . . 12
⊢ (¬
¬ (sin‘(𝐴 mod
π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π))) |
| 134 | 128, 133 | sylbir 225 |
. . . . . . . . . . 11
⊢
((sin‘(𝐴 mod
π)) = 0 → ¬ 0 < (sin‘(𝐴 mod π))) |
| 135 | 126, 134 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ 0 < (sin‘(𝐴
mod π))) |
| 136 | | sinq12gt0 24259 |
. . . . . . . . . 10
⊢ ((𝐴 mod π) ∈ (0(,)π)
→ 0 < (sin‘(𝐴
mod π))) |
| 137 | 135, 136 | nsyl 135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ (𝐴 mod π) ∈
(0(,)π)) |
| 138 | 80 | rexri 10097 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 139 | 1 | rexri 10097 |
. . . . . . . . . . 11
⊢ π
∈ ℝ* |
| 140 | | elioo2 12216 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ*) →
((𝐴 mod π) ∈
(0(,)π) ↔ ((𝐴 mod
π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π))) |
| 141 | 138, 139,
140 | mp2an 708 |
. . . . . . . . . 10
⊢ ((𝐴 mod π) ∈ (0(,)π)
↔ ((𝐴 mod π) ∈
ℝ ∧ 0 < (𝐴 mod
π) ∧ (𝐴 mod π)
< π)) |
| 142 | 141 | notbii 310 |
. . . . . . . . 9
⊢ (¬
(𝐴 mod π) ∈
(0(,)π) ↔ ¬ ((𝐴
mod π) ∈ ℝ ∧ 0 < (𝐴 mod π) ∧ (𝐴 mod π) < π)) |
| 143 | 137, 142 | sylib 208 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ ((𝐴 mod π) ∈
ℝ ∧ 0 < (𝐴 mod
π) ∧ (𝐴 mod π)
< π)) |
| 144 | | 3anan12 1051 |
. . . . . . . . 9
⊢ (((𝐴 mod π) ∈ ℝ ∧
0 < (𝐴 mod π) ∧
(𝐴 mod π) < π)
↔ (0 < (𝐴 mod π)
∧ ((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π))) |
| 145 | 144 | notbii 310 |
. . . . . . . 8
⊢ (¬
((𝐴 mod π) ∈
ℝ ∧ 0 < (𝐴 mod
π) ∧ (𝐴 mod π)
< π) ↔ ¬ (0 < (𝐴 mod π) ∧ ((𝐴 mod π) ∈ ℝ ∧ (𝐴 mod π) <
π))) |
| 146 | 143, 145 | sylib 208 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ (0 < (𝐴 mod π)
∧ ((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π))) |
| 147 | | modlt 12679 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → (𝐴 mod π) < π) |
| 148 | 147 | ancoms 469 |
. . . . . . . . 9
⊢ ((π
∈ ℝ+ ∧ 𝐴 ∈ ℝ) → (𝐴 mod π) < π) |
| 149 | 3, 74, 148 | sylancr 695 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) <
π) |
| 150 | 76, 149 | jca 554 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π)) |
| 151 | | not12an2impnot1 38784 |
. . . . . . 7
⊢ ((¬
(0 < (𝐴 mod π) ∧
((𝐴 mod π) ∈
ℝ ∧ (𝐴 mod π)
< π)) ∧ ((𝐴 mod
π) ∈ ℝ ∧ (𝐴 mod π) < π)) → ¬ 0 <
(𝐴 mod
π)) |
| 152 | 146, 150,
151 | syl2anc 693 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
¬ 0 < (𝐴 mod
π)) |
| 153 | | modge0 12678 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → 0 ≤ (𝐴 mod π)) |
| 154 | 153 | ancoms 469 |
. . . . . . . 8
⊢ ((π
∈ ℝ+ ∧ 𝐴 ∈ ℝ) → 0 ≤ (𝐴 mod π)) |
| 155 | 3, 74, 154 | sylancr 695 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 0
≤ (𝐴 mod
π)) |
| 156 | | leloe 10124 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (𝐴 mod
π) ∈ ℝ) → (0 ≤ (𝐴 mod π) ↔ (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π)))) |
| 157 | 156 | biimp3a 1432 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ (𝐴 mod
π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) |
| 158 | 157 | idiALT 38683 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ (𝐴 mod
π) ∈ ℝ ∧ 0 ≤ (𝐴 mod π)) → (0 < (𝐴 mod π) ∨ 0 = (𝐴 mod π))) |
| 159 | 80, 76, 155, 158 | mp3an2i 1429 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(0 < (𝐴 mod π) ∨ 0
= (𝐴 mod
π))) |
| 160 | | pm2.53 388 |
. . . . . . . 8
⊢ ((0 <
(𝐴 mod π) ∨ 0 =
(𝐴 mod π)) → (¬
0 < (𝐴 mod π) →
0 = (𝐴 mod
π))) |
| 161 | 160 | imp 445 |
. . . . . . 7
⊢ (((0 <
(𝐴 mod π) ∨ 0 =
(𝐴 mod π)) ∧ ¬ 0
< (𝐴 mod π)) → 0
= (𝐴 mod
π)) |
| 162 | 161 | ancoms 469 |
. . . . . 6
⊢ ((¬ 0
< (𝐴 mod π) ∧ (0
< (𝐴 mod π) ∨ 0 =
(𝐴 mod π))) → 0 =
(𝐴 mod
π)) |
| 163 | 152, 159,
162 | syl2anc 693 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) → 0
= (𝐴 mod
π)) |
| 164 | 163 | eqcomd 2628 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 mod π) =
0) |
| 165 | | mod0 12675 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+) → ((𝐴 mod π) = 0 ↔ (𝐴 / π) ∈ ℤ)) |
| 166 | 165 | biimp3a 1432 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ+ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ) |
| 167 | 166 | 3com12 1269 |
. . . 4
⊢ ((π
∈ ℝ+ ∧ 𝐴 ∈ ℝ ∧ (𝐴 mod π) = 0) → (𝐴 / π) ∈ ℤ) |
| 168 | 3, 74, 164, 167 | mp3an2i 1429 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧
(sin‘𝐴) = 0) →
(𝐴 / π) ∈
ℤ) |
| 169 | 168 | ex 450 |
. 2
⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 →
(𝐴 / π) ∈
ℤ)) |
| 170 | 97 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → π
∈ ℂ) |
| 171 | 85 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → π ≠
0) |
| 172 | 11, 170, 171 | divcan1d 10802 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝐴 / π) · π) = 𝐴) |
| 173 | 172 | fveq2d 6195 |
. . . 4
⊢ (𝐴 ∈ ℂ →
(sin‘((𝐴 / π)
· π)) = (sin‘𝐴)) |
| 174 | | id 22 |
. . . . 5
⊢ ((𝐴 / π) ∈ ℤ →
(𝐴 / π) ∈
ℤ) |
| 175 | | sinkpi 24271 |
. . . . 5
⊢ ((𝐴 / π) ∈ ℤ →
(sin‘((𝐴 / π)
· π)) = 0) |
| 176 | 174, 175 | syl 17 |
. . . 4
⊢ ((𝐴 / π) ∈ ℤ →
(sin‘((𝐴 / π)
· π)) = 0) |
| 177 | 173, 176 | sylan9req 2677 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝐴 / π) ∈ ℤ) →
(sin‘𝐴) =
0) |
| 178 | 177 | ex 450 |
. 2
⊢ (𝐴 ∈ ℂ → ((𝐴 / π) ∈ ℤ →
(sin‘𝐴) =
0)) |
| 179 | 169, 178 | impbid 202 |
1
⊢ (𝐴 ∈ ℂ →
((sin‘𝐴) = 0 ↔
(𝐴 / π) ∈
ℤ)) |