| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 4cycl2v2nb | Structured version Visualization version GIF version | ||
| Description: In a (maybe degenerated) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.) |
| Ref | Expression |
|---|---|
| 4cycl2v2nb | ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssi 4353 | . 2 ⊢ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → {{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸) | |
| 2 | prcom 4267 | . . . . 5 ⊢ {𝐷, 𝐴} = {𝐴, 𝐷} | |
| 3 | 2 | eleq1i 2692 | . . . 4 ⊢ ({𝐷, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐷} ∈ 𝐸) |
| 4 | 3 | biimpi 206 | . . 3 ⊢ ({𝐷, 𝐴} ∈ 𝐸 → {𝐴, 𝐷} ∈ 𝐸) |
| 5 | prcom 4267 | . . . . 5 ⊢ {𝐶, 𝐷} = {𝐷, 𝐶} | |
| 6 | 5 | eleq1i 2692 | . . . 4 ⊢ ({𝐶, 𝐷} ∈ 𝐸 ↔ {𝐷, 𝐶} ∈ 𝐸) |
| 7 | 6 | biimpi 206 | . . 3 ⊢ ({𝐶, 𝐷} ∈ 𝐸 → {𝐷, 𝐶} ∈ 𝐸) |
| 8 | prssi 4353 | . . 3 ⊢ (({𝐴, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐶} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) | |
| 9 | 4, 7, 8 | syl2anr 495 | . 2 ⊢ (({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) → {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸) |
| 10 | 1, 9 | anim12i 590 | 1 ⊢ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → ({{𝐴, 𝐵}, {𝐵, 𝐶}} ⊆ 𝐸 ∧ {{𝐴, 𝐷}, {𝐷, 𝐶}} ⊆ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ⊆ wss 3574 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: 4cycl2vnunb 27154 |
| Copyright terms: Public domain | W3C validator |