| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotataxb | Structured version Visualization version GIF version | ||
| Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| abnotataxb.1 | ⊢ ¬ 𝜑 |
| abnotataxb.2 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| abnotataxb | ⊢ (𝜑 ⊻ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnotataxb.2 | . . . . 5 ⊢ 𝜓 | |
| 2 | abnotataxb.1 | . . . . 5 ⊢ ¬ 𝜑 | |
| 3 | 1, 2 | pm3.2i 471 | . . . 4 ⊢ (𝜓 ∧ ¬ 𝜑) |
| 4 | 3 | olci 406 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)) |
| 5 | xor 935 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))) | |
| 6 | 4, 5 | mpbir 221 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) |
| 7 | df-xor 1465 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | mpbir 221 | 1 ⊢ (𝜑 ⊻ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 ⊻ wxo 1464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-xor 1465 |
| This theorem is referenced by: aisfbistiaxb 41087 |
| Copyright terms: Public domain | W3C validator |