![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-xor | Structured version Visualization version GIF version |
Description: Define exclusive disjunction (logical 'xor'). Return true if either the left or right, but not both, are true. After we define the constant true ⊤ (df-tru 1486) and the constant false ⊥ (df-fal 1489), we will be able to prove these truth table values: ((⊤ ⊻ ⊤) ↔ ⊥) (truxortru 1528), ((⊤ ⊻ ⊥) ↔ ⊤) (truxorfal 1529), ((⊥ ⊻ ⊤) ↔ ⊤) (falxortru 1530), and ((⊥ ⊻ ⊥) ↔ ⊥) (falxorfal 1531). Contrast with ∧ (df-an 386), ∨ (df-or 385), → (wi 4), and ⊼ (df-nan 1448) . (Contributed by FL, 22-Nov-2010.) |
Ref | Expression |
---|---|
df-xor | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wxo 1464 | . 2 wff (𝜑 ⊻ 𝜓) |
4 | 1, 2 | wb 196 | . . 3 wff (𝜑 ↔ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ↔ 𝜓) |
6 | 3, 5 | wb 196 | 1 wff ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: xnor 1466 xorcom 1467 xorass 1468 excxor 1469 xor2 1470 xorneg2 1474 xorbi12i 1477 xorbi12d 1478 anxordi 1479 xorexmid 1480 truxortru 1528 truxorfal 1529 falxorfal 1531 hadbi 1537 sadadd2lem2 15172 f1omvdco3 17869 tsxo3 33946 tsxo4 33947 ifpxorxorb 37856 or3or 38319 axorbtnotaiffb 41070 axorbciffatcxorb 41072 aisbnaxb 41078 abnotbtaxb 41082 abnotataxb 41083 |
Copyright terms: Public domain | W3C validator |