MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abv Structured version   Visualization version   GIF version

Theorem abv 3206
Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
abv ({𝑥𝜑} = V ↔ ∀𝑥𝜑)

Proof of Theorem abv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-clab 2609 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
21albii 1747 . 2 (∀𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
3 eqv 3205 . 2 ({𝑥𝜑} = V ↔ ∀𝑦 𝑦 ∈ {𝑥𝜑})
4 nfv 1843 . . 3 𝑦𝜑
54sb8 2424 . 2 (∀𝑥𝜑 ↔ ∀𝑦[𝑦 / 𝑥]𝜑)
62, 3, 53bitr4i 292 1 ({𝑥𝜑} = V ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1481   = wceq 1483  [wsb 1880  wcel 1990  {cab 2608  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by:  dfnf5  3952
  Copyright terms: Public domain W3C validator