| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an6 | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
| Ref | Expression |
|---|---|
| an6 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 865 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜃 ∧ 𝜏) ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) | |
| 2 | an4 865 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜏)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏))) | |
| 3 | 2 | anbi1i 731 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) |
| 4 | 1, 3 | bitri 264 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜃 ∧ 𝜏) ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) |
| 5 | df-3an 1039 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 6 | df-3an 1039 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜃 ∧ 𝜏) ∧ 𝜂)) | |
| 7 | 5, 6 | anbi12i 733 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜃 ∧ 𝜏) ∧ 𝜂))) |
| 8 | df-3an 1039 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) | |
| 9 | 4, 7, 8 | 3bitr4i 292 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∧ w3a 1037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: 3an6 1409 elfzuzb 12336 fzadd2 12376 ptbasin 21380 iimulcl 22736 nb3grpr 26284 nb3grpr2 26285 txpconn 31214 paddasslem9 35114 paddasslem10 35115 gboge9 41652 |
| Copyright terms: Public domain | W3C validator |