| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > an6 | Structured version Visualization version Unicode version | ||
| Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
| Ref | Expression |
|---|---|
| an6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 865 |
. . 3
| |
| 2 | an4 865 |
. . . 4
| |
| 3 | 2 | anbi1i 731 |
. . 3
|
| 4 | 1, 3 | bitri 264 |
. 2
|
| 5 | df-3an 1039 |
. . 3
| |
| 6 | df-3an 1039 |
. . 3
| |
| 7 | 5, 6 | anbi12i 733 |
. 2
|
| 8 | df-3an 1039 |
. 2
| |
| 9 | 4, 7, 8 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: 3an6 1409 elfzuzb 12336 fzadd2 12376 ptbasin 21380 iimulcl 22736 nb3grpr 26284 nb3grpr2 26285 txpconn 31214 paddasslem9 35114 paddasslem10 35115 gboge9 41652 |
| Copyright terms: Public domain | W3C validator |