| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancomst | Structured version Visualization version GIF version | ||
| Description: Closed form of ancoms 469. (Contributed by Alan Sare, 31-Dec-2011.) |
| Ref | Expression |
|---|---|
| ancomst | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 466 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | 1 | imbi1i 339 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: sbcom2 2445 ralcomf 3096 fvn0ssdmfun 6350 ovolgelb 23248 itg2leub 23501 nmoubi 27627 wl-sbcom2d 33344 ifpidg 37836 undmrnresiss 37910 ntrneiiso 38389 expcomdg 38706 |
| Copyright terms: Public domain | W3C validator |