![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2leub | Structured version Visualization version GIF version |
Description: Any upper bound on the integrals of all simple functions 𝐺 dominated by 𝐹 is greater than (∫2‘𝐹), the least upper bound. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2leub | ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2val 23495 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
4 | 3 | breq1d 4663 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴)) |
5 | 1 | itg2lcl 23494 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
6 | supxrleub 12156 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) | |
7 | 5, 6 | mpan 706 | . . . 4 ⊢ (𝐴 ∈ ℝ* → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
8 | 7 | adantl 482 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴)) |
9 | eqeq1 2626 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 = (∫1‘𝑔) ↔ 𝑧 = (∫1‘𝑔))) | |
10 | 9 | anbi2d 740 | . . . . . 6 ⊢ (𝑥 = 𝑧 → ((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ (𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
11 | 10 | rexbidv 3052 | . . . . 5 ⊢ (𝑥 = 𝑧 → (∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔)) ↔ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)))) |
12 | 11 | ralab 3367 | . . . 4 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) |
13 | r19.23v 3023 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴)) | |
14 | ancomst 468 | . . . . . . . . 9 ⊢ (((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘𝑟 ≤ 𝐹) → 𝑧 ≤ 𝐴)) | |
15 | impexp 462 | . . . . . . . . 9 ⊢ (((𝑧 = (∫1‘𝑔) ∧ 𝑔 ∘𝑟 ≤ 𝐹) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
16 | 14, 15 | bitri 264 | . . . . . . . 8 ⊢ (((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
17 | 16 | ralbii 2980 | . . . . . . 7 ⊢ (∀𝑔 ∈ dom ∫1((𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
18 | 13, 17 | bitr3i 266 | . . . . . 6 ⊢ ((∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
19 | 18 | albii 1747 | . . . . 5 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) |
20 | ralcom4 3224 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴))) | |
21 | fvex 6201 | . . . . . . . 8 ⊢ (∫1‘𝑔) ∈ V | |
22 | breq1 4656 | . . . . . . . . 9 ⊢ (𝑧 = (∫1‘𝑔) → (𝑧 ≤ 𝐴 ↔ (∫1‘𝑔) ≤ 𝐴)) | |
23 | 22 | imbi2d 330 | . . . . . . . 8 ⊢ (𝑧 = (∫1‘𝑔) → ((𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴) ↔ (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
24 | 21, 23 | ceqsalv 3233 | . . . . . . 7 ⊢ (∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
25 | 24 | ralbii 2980 | . . . . . 6 ⊢ (∀𝑔 ∈ dom ∫1∀𝑧(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
26 | 20, 25 | bitr3i 266 | . . . . 5 ⊢ (∀𝑧∀𝑔 ∈ dom ∫1(𝑧 = (∫1‘𝑔) → (𝑔 ∘𝑟 ≤ 𝐹 → 𝑧 ≤ 𝐴)) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
27 | 19, 26 | bitri 264 | . . . 4 ⊢ (∀𝑧(∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑧 = (∫1‘𝑔)) → 𝑧 ≤ 𝐴) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
28 | 12, 27 | bitri 264 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}𝑧 ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴)) |
29 | 8, 28 | syl6bb 276 | . 2 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → (sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
30 | 4, 29 | bitrd 268 | 1 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐴 ∈ ℝ*) → ((∫2‘𝐹) ≤ 𝐴 ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 ∈ wcel 1990 {cab 2608 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ∘𝑟 cofr 6896 supcsup 8346 ℝcr 9935 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 ≤ cle 10075 [,]cicc 12178 ∫1citg1 23384 ∫2citg2 23385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 df-itg2 23390 |
This theorem is referenced by: itg2itg1 23503 itg2le 23506 itg2seq 23509 itg2lea 23511 itg2mulclem 23513 itg2splitlem 23515 itg2split 23516 itg2mono 23520 ftc1anclem5 33489 |
Copyright terms: Public domain | W3C validator |