| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anifp | Structured version Visualization version GIF version | ||
| Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 1021. (Contributed by BJ, 30-Sep-2019.) |
| Ref | Expression |
|---|---|
| anifp | ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 399 | . . 3 ⊢ (𝜓 → (¬ 𝜑 ∨ 𝜓)) | |
| 2 | olc 399 | . . 3 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
| 3 | 1, 2 | anim12i 590 | . 2 ⊢ ((𝜓 ∧ 𝜒) → ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
| 4 | dfifp4 1016 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
| 5 | 3, 4 | sylibr 224 | 1 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: bj-consensus 32562 bj-consensusALT 32563 axfrege58a 38168 |
| Copyright terms: Public domain | W3C validator |