| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfifp7 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019.) |
| Ref | Expression |
|---|---|
| dfifp7 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜒 → 𝜑) → (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 402 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∨ ¬ (𝜒 → 𝜑)) ↔ (¬ (𝜒 → 𝜑) ∨ (𝜑 ∧ 𝜓))) | |
| 2 | dfifp6 1018 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ ¬ (𝜒 → 𝜑))) | |
| 3 | imor 428 | . 2 ⊢ (((𝜒 → 𝜑) → (𝜑 ∧ 𝜓)) ↔ (¬ (𝜒 → 𝜑) ∨ (𝜑 ∧ 𝜓))) | |
| 4 | 1, 2, 3 | 3bitr4i 292 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜒 → 𝜑) → (𝜑 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 if-wif 1012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |