| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovnuoveq | Structured version Visualization version GIF version | ||
| Description: The alternative value of the operation on an ordered pair equals the operation's value at this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovnuoveq | ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 41198 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | 1 | neeq1i 2858 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ≠ V ↔ (𝐹'''〈𝐴, 𝐵〉) ≠ V) |
| 3 | afvnufveq 41227 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ≠ V → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
| 4 | df-ov 6653 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 3, 1, 4 | 3eqtr4g 2681 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| 6 | 2, 5 | sylbi 207 | 1 ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ≠ wne 2794 Vcvv 3200 〈cop 4183 ‘cfv 5888 (class class class)co 6650 '''cafv 41194 ((caov 41195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-rab 2921 df-v 3202 df-un 3579 df-if 4087 df-fv 5896 df-ov 6653 df-afv 41197 df-aov 41198 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |