![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-cc | Structured version Visualization version GIF version |
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 9299, but is weak enough that it can be proven using DC (see axcc 9280). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
ax-cc | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . 4 setvar 𝑥 | |
2 | 1 | cv 1482 | . . 3 class 𝑥 |
3 | com 7065 | . . 3 class ω | |
4 | cen 7952 | . . 3 class ≈ | |
5 | 2, 3, 4 | wbr 4653 | . 2 wff 𝑥 ≈ ω |
6 | vz | . . . . . . 7 setvar 𝑧 | |
7 | 6 | cv 1482 | . . . . . 6 class 𝑧 |
8 | c0 3915 | . . . . . 6 class ∅ | |
9 | 7, 8 | wne 2794 | . . . . 5 wff 𝑧 ≠ ∅ |
10 | vf | . . . . . . . 8 setvar 𝑓 | |
11 | 10 | cv 1482 | . . . . . . 7 class 𝑓 |
12 | 7, 11 | cfv 5888 | . . . . . 6 class (𝑓‘𝑧) |
13 | 12, 7 | wcel 1990 | . . . . 5 wff (𝑓‘𝑧) ∈ 𝑧 |
14 | 9, 13 | wi 4 | . . . 4 wff (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
15 | 14, 6, 2 | wral 2912 | . . 3 wff ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
16 | 15, 10 | wex 1704 | . 2 wff ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧) |
17 | 5, 16 | wi 4 | 1 wff (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
Colors of variables: wff setvar class |
This axiom is referenced by: axcc2lem 9258 axccdom 39416 axccd 39429 |
Copyright terms: Public domain | W3C validator |