MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-cc Structured version   Visualization version   Unicode version

Axiom ax-cc 9257
Description: The axiom of countable choice (CC), also known as the axiom of denumerable choice. It is clearly a special case of ac5 9299, but is weak enough that it can be proven using DC (see axcc 9280). It is, however, strictly stronger than ZF and cannot be proven in ZF. It states that any countable collection of nonempty sets must have a choice function. (Contributed by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
ax-cc  |-  ( x 
~~  om  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
Distinct variable group:    x, f, z

Detailed syntax breakdown of Axiom ax-cc
StepHypRef Expression
1 vx . . . 4  setvar  x
21cv 1482 . . 3  class  x
3 com 7065 . . 3  class  om
4 cen 7952 . . 3  class  ~~
52, 3, 4wbr 4653 . 2  wff  x  ~~  om
6 vz . . . . . . 7  setvar  z
76cv 1482 . . . . . 6  class  z
8 c0 3915 . . . . . 6  class  (/)
97, 8wne 2794 . . . . 5  wff  z  =/=  (/)
10 vf . . . . . . . 8  setvar  f
1110cv 1482 . . . . . . 7  class  f
127, 11cfv 5888 . . . . . 6  class  ( f `
 z )
1312, 7wcel 1990 . . . . 5  wff  ( f `
 z )  e.  z
149, 13wi 4 . . . 4  wff  ( z  =/=  (/)  ->  ( f `  z )  e.  z )
1514, 6, 2wral 2912 . . 3  wff  A. z  e.  x  ( z  =/=  (/)  ->  ( f `  z )  e.  z )
1615, 10wex 1704 . 2  wff  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z )
175, 16wi 4 1  wff  ( x 
~~  om  ->  E. f A. z  e.  x  ( z  =/=  (/)  ->  (
f `  z )  e.  z ) )
Colors of variables: wff setvar class
This axiom is referenced by:  axcc2lem  9258  axccdom  39416  axccd  39429
  Copyright terms: Public domain W3C validator