| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-rrecex | Structured version Visualization version GIF version | ||
| Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by theorem axrrecex 9984. (Contributed by Eric Schmidt, 11-Apr-2007.) |
| Ref | Expression |
|---|---|
| ax-rrecex | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 9935 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 1990 | . . 3 wff 𝐴 ∈ ℝ |
| 4 | cc0 9936 | . . . 4 class 0 | |
| 5 | 1, 4 | wne 2794 | . . 3 wff 𝐴 ≠ 0 |
| 6 | 3, 5 | wa 384 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) |
| 7 | vx | . . . . . 6 setvar 𝑥 | |
| 8 | 7 | cv 1482 | . . . . 5 class 𝑥 |
| 9 | cmul 9941 | . . . . 5 class · | |
| 10 | 1, 8, 9 | co 6650 | . . . 4 class (𝐴 · 𝑥) |
| 11 | c1 9937 | . . . 4 class 1 | |
| 12 | 10, 11 | wceq 1483 | . . 3 wff (𝐴 · 𝑥) = 1 |
| 13 | 12, 7, 2 | wrex 2913 | . 2 wff ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1 |
| 14 | 6, 13 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: 1re 10039 00id 10211 mul02lem1 10212 addid1 10216 recex 10659 rereccl 10743 xrecex 29628 |
| Copyright terms: Public domain | W3C validator |