MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem1 Structured version   Visualization version   GIF version

Theorem mul02lem1 10212
Description: Lemma for mul02 10214. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))

Proof of Theorem mul02lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 0re 10040 . . . . 5 0 ∈ ℝ
2 remulcl 10021 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 · 𝐴) ∈ ℝ)
31, 2mpan 706 . . . 4 (𝐴 ∈ ℝ → (0 · 𝐴) ∈ ℝ)
4 ax-rrecex 10008 . . . 4 (((0 · 𝐴) ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
53, 4sylan 488 . . 3 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
65adantr 481 . 2 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ ((0 · 𝐴) · 𝑦) = 1)
7 00id 10211 . . . . 5 (0 + 0) = 0
87oveq2i 6661 . . . 4 (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (((𝑦 · 𝐴) · 𝐵) · 0)
98eqcomi 2631 . . 3 (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 𝐵) · (0 + 0))
10 simprl 794 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℝ)
1110recnd 10068 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝑦 ∈ ℂ)
12 simplll 798 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℝ)
1312recnd 10068 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐴 ∈ ℂ)
1411, 13mulcld 10060 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (𝑦 · 𝐴) ∈ ℂ)
15 simplr 792 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 ∈ ℂ)
16 0cn 10032 . . . . . 6 0 ∈ ℂ
17 mul32 10203 . . . . . 6 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1816, 17mp3an3 1413 . . . . 5 (((𝑦 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
1914, 15, 18syl2anc 693 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = (((𝑦 · 𝐴) · 0) · 𝐵))
20 mul31 10204 . . . . . . . . 9 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2116, 20mp3an3 1413 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
2211, 13, 21syl2anc 693 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = ((0 · 𝐴) · 𝑦))
23 simprr 796 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((0 · 𝐴) · 𝑦) = 1)
2422, 23eqtrd 2656 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 0) = 1)
2524oveq1d 6665 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = (1 · 𝐵))
26 mulid2 10038 . . . . . 6 (𝐵 ∈ ℂ → (1 · 𝐵) = 𝐵)
2726ad2antlr 763 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (1 · 𝐵) = 𝐵)
2825, 27eqtrd 2656 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 0) · 𝐵) = 𝐵)
2919, 28eqtrd 2656 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · 0) = 𝐵)
3014, 15mulcld 10060 . . . . 5 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((𝑦 · 𝐴) · 𝐵) ∈ ℂ)
31 adddi 10025 . . . . . 6 ((((𝑦 · 𝐴) · 𝐵) ∈ ℂ ∧ 0 ∈ ℂ ∧ 0 ∈ ℂ) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3216, 16, 31mp3an23 1416 . . . . 5 (((𝑦 · 𝐴) · 𝐵) ∈ ℂ → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3330, 32syl 17 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)))
3429, 29oveq12d 6668 . . . 4 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → ((((𝑦 · 𝐴) · 𝐵) · 0) + (((𝑦 · 𝐴) · 𝐵) · 0)) = (𝐵 + 𝐵))
3533, 34eqtrd 2656 . . 3 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → (((𝑦 · 𝐴) · 𝐵) · (0 + 0)) = (𝐵 + 𝐵))
369, 29, 353eqtr3a 2680 . 2 ((((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℝ ∧ ((0 · 𝐴) · 𝑦) = 1)) → 𝐵 = (𝐵 + 𝐵))
376, 36rexlimddv 3035 1 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  mul02lem2  10213
  Copyright terms: Public domain W3C validator