| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax11-pm2 | Structured version Visualization version GIF version | ||
| Description: Proof of ax-11 2034 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2037 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2034 is used in the proof only through nfal 2153, nfsb 2440, sbal 2462, sb8 2424. See also ax11-pm 32819. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ax11-pm2 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2stdpc4 2354 | . . . . . 6 ⊢ (∀𝑥∀𝑦𝜑 → [𝑧 / 𝑥][𝑡 / 𝑦]𝜑) | |
| 2 | 1 | gen2 1723 | . . . . 5 ⊢ ∀𝑡∀𝑧(∀𝑥∀𝑦𝜑 → [𝑧 / 𝑥][𝑡 / 𝑦]𝜑) |
| 3 | nfv 1843 | . . . . . . . 8 ⊢ Ⅎ𝑡𝜑 | |
| 4 | 3 | nfal 2153 | . . . . . . 7 ⊢ Ⅎ𝑡∀𝑦𝜑 |
| 5 | 4 | nfal 2153 | . . . . . 6 ⊢ Ⅎ𝑡∀𝑥∀𝑦𝜑 |
| 6 | nfv 1843 | . . . . . . . 8 ⊢ Ⅎ𝑧𝜑 | |
| 7 | 6 | nfal 2153 | . . . . . . 7 ⊢ Ⅎ𝑧∀𝑦𝜑 |
| 8 | 7 | nfal 2153 | . . . . . 6 ⊢ Ⅎ𝑧∀𝑥∀𝑦𝜑 |
| 9 | 5, 8 | 2stdpc5 32816 | . . . . 5 ⊢ (∀𝑡∀𝑧(∀𝑥∀𝑦𝜑 → [𝑧 / 𝑥][𝑡 / 𝑦]𝜑) → (∀𝑥∀𝑦𝜑 → ∀𝑡∀𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑)) |
| 10 | 2, 9 | ax-mp 5 | . . . 4 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑡∀𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑) |
| 11 | 6 | nfsb 2440 | . . . . . 6 ⊢ Ⅎ𝑧[𝑡 / 𝑦]𝜑 |
| 12 | 11 | sb8 2424 | . . . . 5 ⊢ (∀𝑥[𝑡 / 𝑦]𝜑 ↔ ∀𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑) |
| 13 | 12 | albii 1747 | . . . 4 ⊢ (∀𝑡∀𝑥[𝑡 / 𝑦]𝜑 ↔ ∀𝑡∀𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑) |
| 14 | 10, 13 | sylibr 224 | . . 3 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑡∀𝑥[𝑡 / 𝑦]𝜑) |
| 15 | sbal 2462 | . . . 4 ⊢ ([𝑡 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑡 / 𝑦]𝜑) | |
| 16 | 15 | albii 1747 | . . 3 ⊢ (∀𝑡[𝑡 / 𝑦]∀𝑥𝜑 ↔ ∀𝑡∀𝑥[𝑡 / 𝑦]𝜑) |
| 17 | 14, 16 | sylibr 224 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑡[𝑡 / 𝑦]∀𝑥𝜑) |
| 18 | 3 | nfal 2153 | . . 3 ⊢ Ⅎ𝑡∀𝑥𝜑 |
| 19 | 18 | sb8 2424 | . 2 ⊢ (∀𝑦∀𝑥𝜑 ↔ ∀𝑡[𝑡 / 𝑦]∀𝑥𝜑) |
| 20 | 17, 19 | sylibr 224 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |