Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax11-pm2 Structured version   Visualization version   GIF version

Theorem ax11-pm2 32823
Description: Proof of ax-11 2034 from the standard axioms of predicate calculus, similar to PM's proof of alcom 2037 (PM*11.2). This proof requires that 𝑥 and 𝑦 be distinct. Axiom ax-11 2034 is used in the proof only through nfal 2153, nfsb 2440, sbal 2462, sb8 2424. See also ax11-pm 32819. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
ax11-pm2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax11-pm2
Dummy variables 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2stdpc4 2354 . . . . . 6 (∀𝑥𝑦𝜑 → [𝑧 / 𝑥][𝑡 / 𝑦]𝜑)
21gen2 1723 . . . . 5 𝑡𝑧(∀𝑥𝑦𝜑 → [𝑧 / 𝑥][𝑡 / 𝑦]𝜑)
3 nfv 1843 . . . . . . . 8 𝑡𝜑
43nfal 2153 . . . . . . 7 𝑡𝑦𝜑
54nfal 2153 . . . . . 6 𝑡𝑥𝑦𝜑
6 nfv 1843 . . . . . . . 8 𝑧𝜑
76nfal 2153 . . . . . . 7 𝑧𝑦𝜑
87nfal 2153 . . . . . 6 𝑧𝑥𝑦𝜑
95, 82stdpc5 32816 . . . . 5 (∀𝑡𝑧(∀𝑥𝑦𝜑 → [𝑧 / 𝑥][𝑡 / 𝑦]𝜑) → (∀𝑥𝑦𝜑 → ∀𝑡𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑))
102, 9ax-mp 5 . . . 4 (∀𝑥𝑦𝜑 → ∀𝑡𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑)
116nfsb 2440 . . . . . 6 𝑧[𝑡 / 𝑦]𝜑
1211sb8 2424 . . . . 5 (∀𝑥[𝑡 / 𝑦]𝜑 ↔ ∀𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑)
1312albii 1747 . . . 4 (∀𝑡𝑥[𝑡 / 𝑦]𝜑 ↔ ∀𝑡𝑧[𝑧 / 𝑥][𝑡 / 𝑦]𝜑)
1410, 13sylibr 224 . . 3 (∀𝑥𝑦𝜑 → ∀𝑡𝑥[𝑡 / 𝑦]𝜑)
15 sbal 2462 . . . 4 ([𝑡 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑡 / 𝑦]𝜑)
1615albii 1747 . . 3 (∀𝑡[𝑡 / 𝑦]∀𝑥𝜑 ↔ ∀𝑡𝑥[𝑡 / 𝑦]𝜑)
1714, 16sylibr 224 . 2 (∀𝑥𝑦𝜑 → ∀𝑡[𝑡 / 𝑦]∀𝑥𝜑)
183nfal 2153 . . 3 𝑡𝑥𝜑
1918sb8 2424 . 2 (∀𝑦𝑥𝜑 ↔ ∀𝑡[𝑡 / 𝑦]∀𝑥𝜑)
2017, 19sylibr 224 1 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator