| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axorbtnotaiffb | Structured version Visualization version GIF version | ||
| Description: Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1465 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| axorbtnotaiffb.1 | ⊢ (𝜑 ⊻ 𝜓) |
| Ref | Expression |
|---|---|
| axorbtnotaiffb | ⊢ ¬ (𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axorbtnotaiffb.1 | . 2 ⊢ (𝜑 ⊻ 𝜓) | |
| 2 | df-xor 1465 | . 2 ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mpbi 220 | 1 ⊢ ¬ (𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ⊻ wxo 1464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-xor 1465 |
| This theorem is referenced by: axorbciffatcxorb 41072 aifftbifffaibifff 41089 |
| Copyright terms: Public domain | W3C validator |