MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregndlem1 Structured version   Visualization version   GIF version

Theorem axregndlem1 9424
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. (Contributed by NM, 3-Jan-2002.)
Assertion
Ref Expression
axregndlem1 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))

Proof of Theorem axregndlem1
StepHypRef Expression
1 19.8a 2052 . 2 (𝑥𝑦 → ∃𝑥 𝑥𝑦)
2 nfae 2316 . . 3 𝑥𝑥 𝑥 = 𝑧
3 nfae 2316 . . . . . 6 𝑧𝑥 𝑥 = 𝑧
4 elirrv 8504 . . . . . . . . 9 ¬ 𝑥𝑥
5 elequ1 1997 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥𝑥𝑧𝑥))
64, 5mtbii 316 . . . . . . . 8 (𝑥 = 𝑧 → ¬ 𝑧𝑥)
76sps 2055 . . . . . . 7 (∀𝑥 𝑥 = 𝑧 → ¬ 𝑧𝑥)
87pm2.21d 118 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → (𝑧𝑥 → ¬ 𝑧𝑦))
93, 8alrimi 2082 . . . . 5 (∀𝑥 𝑥 = 𝑧 → ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))
109anim2i 593 . . . 4 ((𝑥𝑦 ∧ ∀𝑥 𝑥 = 𝑧) → (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
1110expcom 451 . . 3 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
122, 11eximd 2085 . 2 (∀𝑥 𝑥 = 𝑧 → (∃𝑥 𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
131, 12syl5 34 1 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481  wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  axregndlem2  9425  axregnd  9426
  Copyright terms: Public domain W3C validator