Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  biancom Structured version   Visualization version   GIF version

Theorem biancom 33994
Description: Commuting conjunction in a biconditional. (Contributed by Peter Mazsa, 17-Jun-2018.)
Hypothesis
Ref Expression
biancom.1 (𝜑 ↔ (𝜒𝜓))
Assertion
Ref Expression
biancom (𝜑 ↔ (𝜓𝜒))

Proof of Theorem biancom
StepHypRef Expression
1 biancom.1 . 2 (𝜑 ↔ (𝜒𝜓))
2 ancom 466 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
31, 2bitr4i 267 1 (𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  anbi1ci  33996  rabeqel  34019  iss2  34112
  Copyright terms: Public domain W3C validator