Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iss2 Structured version   Visualization version   GIF version

Theorem iss2 34112
Description: A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019.)
Assertion
Ref Expression
iss2 (𝐴 ⊆ I ↔ 𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)))

Proof of Theorem iss2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . . . 9 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ I ))
2 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
3 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
42, 3opeldm 5328 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
51, 4jca2 556 . . . . . . . 8 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
62, 3opelrn 5357 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ ran 𝐴)
71, 6jca2 556 . . . . . . . 8 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑦 ∈ ran 𝐴)))
85, 7jcad 555 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑦 ∈ ran 𝐴))))
9 anandi 871 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ I ∧ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴)) ↔ ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑦 ∈ ran 𝐴)))
108, 9syl6ibr 242 . . . . . 6 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I ∧ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴))))
11 df-br 4654 . . . . . . . . 9 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
123ideq 5274 . . . . . . . . 9 (𝑥 I 𝑦𝑥 = 𝑦)
1311, 12bitr3i 266 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
142eldm2 5322 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
15 opeq2 4403 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1615eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1716biimprcd 240 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1813, 17syl5bi 232 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
191, 18sylcom 30 . . . . . . . . . . . . . 14 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
2019exlimdv 1861 . . . . . . . . . . . . 13 (𝐴 ⊆ I → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
2114, 20syl5bi 232 . . . . . . . . . . . 12 (𝐴 ⊆ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
2216imbi2d 330 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴) ↔ (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2321, 22syl5ibcom 235 . . . . . . . . . . 11 (𝐴 ⊆ I → (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2423imp 445 . . . . . . . . . 10 ((𝐴 ⊆ I ∧ 𝑥 = 𝑦) → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
2524adantrd 484 . . . . . . . . 9 ((𝐴 ⊆ I ∧ 𝑥 = 𝑦) → ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
2625ex 450 . . . . . . . 8 (𝐴 ⊆ I → (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2713, 26syl5bi 232 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ I → ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2827impd 447 . . . . . 6 (𝐴 ⊆ I → ((⟨𝑥, 𝑦⟩ ∈ I ∧ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴)) → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
2910, 28impbid 202 . . . . 5 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴))))
30 opelinxp 34111 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (dom 𝐴 × ran 𝐴)) ↔ ((𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴) ∧ ⟨𝑥, 𝑦⟩ ∈ I ))
3130biancom 33994 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (dom 𝐴 × ran 𝐴)) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ (𝑥 ∈ dom 𝐴𝑦 ∈ ran 𝐴)))
3229, 31syl6bbr 278 . . . 4 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ∩ (dom 𝐴 × ran 𝐴))))
3332alrimivv 1856 . . 3 (𝐴 ⊆ I → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ∩ (dom 𝐴 × ran 𝐴))))
34 reli 5249 . . . . 5 Rel I
35 relss 5206 . . . . 5 (𝐴 ⊆ I → (Rel I → Rel 𝐴))
3634, 35mpi 20 . . . 4 (𝐴 ⊆ I → Rel 𝐴)
37 relinxp 34069 . . . 4 Rel ( I ∩ (dom 𝐴 × ran 𝐴))
38 eqrel 5209 . . . 4 ((Rel 𝐴 ∧ Rel ( I ∩ (dom 𝐴 × ran 𝐴))) → (𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ∩ (dom 𝐴 × ran 𝐴)))))
3936, 37, 38sylancl 694 . . 3 (𝐴 ⊆ I → (𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ∩ (dom 𝐴 × ran 𝐴)))))
4033, 39mpbird 247 . 2 (𝐴 ⊆ I → 𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)))
41 inss1 3833 . . 3 ( I ∩ (dom 𝐴 × ran 𝐴)) ⊆ I
42 sseq1 3626 . . 3 (𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)) → (𝐴 ⊆ I ↔ ( I ∩ (dom 𝐴 × ran 𝐴)) ⊆ I ))
4341, 42mpbiri 248 . 2 (𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)) → 𝐴 ⊆ I )
4440, 43impbii 199 1 (𝐴 ⊆ I ↔ 𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  cin 3573  wss 3574  cop 4183   class class class wbr 4653   I cid 5023   × cxp 5112  dom cdm 5114  ran crn 5115  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator