| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biass | Structured version Visualization version GIF version | ||
| Description: Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.) |
| Ref | Expression |
|---|---|
| biass | ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.501 356 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | |
| 2 | 1 | bibi1d 333 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
| 3 | pm5.501 356 | . . 3 ⊢ (𝜑 → ((𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | |
| 4 | 2, 3 | bitr3d 270 | . 2 ⊢ (𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
| 5 | nbbn 373 | . . . 4 ⊢ ((¬ 𝜓 ↔ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
| 6 | nbn2 360 | . . . . 5 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) | |
| 7 | 6 | bibi1d 333 | . . . 4 ⊢ (¬ 𝜑 → ((¬ 𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
| 8 | 5, 7 | syl5bbr 274 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒))) |
| 9 | nbn2 360 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜓 ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) | |
| 10 | 8, 9 | bitr3d 270 | . 2 ⊢ (¬ 𝜑 → (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒)))) |
| 11 | 4, 10 | pm2.61i 176 | 1 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: biluk 974 xorass 1468 had1 1542 symdifass 3853 |
| Copyright terms: Public domain | W3C validator |