| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.501 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.501 | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.1im 253 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ↔ 𝜓))) | |
| 2 | biimp 205 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 2 | com12 32 | . 2 ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) |
| 4 | 1, 3 | impbid 202 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 |
| This theorem is referenced by: ibib 357 ibibr 358 nbn2 360 pm5.18 371 biass 374 pm5.1 902 sadadd2lem2 15172 isclo 20891 nrmmetd 22379 bj-bibibi 32571 |
| Copyright terms: Public domain | W3C validator |