| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biortn | Structured version Visualization version GIF version | ||
| Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.) |
| Ref | Expression |
|---|---|
| biortn | ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 136 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | biorf 420 | . 2 ⊢ (¬ ¬ 𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ↔ (¬ 𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: oranabs 901 xrdifh 29542 ballotlemfc0 30554 ballotlemfcc 30555 topdifinfindis 33194 topdifinffinlem 33195 4atlem3a 34883 4atlem3b 34884 ntrneineine1lem 38382 |
| Copyright terms: Public domain | W3C validator |