![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biortn | Structured version Visualization version Unicode version |
Description: A wff is equivalent to its negated disjunction with falsehood. (Contributed by NM, 9-Jul-2012.) |
Ref | Expression |
---|---|
biortn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 136 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biorf 420 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 |
This theorem is referenced by: oranabs 901 xrdifh 29542 ballotlemfc0 30554 ballotlemfcc 30555 topdifinfindis 33194 topdifinffinlem 33195 4atlem3a 34883 4atlem3b 34884 ntrneineine1lem 38382 |
Copyright terms: Public domain | W3C validator |