| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-alrimhi | Structured version Visualization version GIF version | ||
| Description: An inference associated with sylgt 1749 and bj-exlimh 32602. (Contributed by BJ, 12-May-2019.) |
| Ref | Expression |
|---|---|
| bj-alrimhi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| bj-alrimhi | ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1710 | . . 3 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | 1 | biimpi 206 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 3 | bj-alrimhi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | alimi 1739 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
| 5 | 2, 4 | syl6 35 | 1 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |