| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexiw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. This is to cbvexvw 1970 what cbvaliw 1933 is to cbvalvw 1969. [TODO: move after cbvalivw 1934]. (Contributed by BJ, 17-Mar-2020.) |
| Ref | Expression |
|---|---|
| bj-cbvexiw.1 | ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) |
| bj-cbvexiw.2 | ⊢ (𝜑 → ∀𝑦𝜑) |
| bj-cbvexiw.3 | ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-cbvexiw | ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-cbvexiw.1 | . 2 ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) | |
| 2 | bj-cbvexiw.2 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 3 | bj-cbvexiw.3 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | spimeh 1925 | . 2 ⊢ (𝜑 → ∃𝑦𝜓) |
| 5 | 1, 4 | bj-exlime 32609 | 1 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: bj-cbvexivw 32660 bj-cbvexw 32664 |
| Copyright terms: Public domain | W3C validator |