| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimeh | Structured version Visualization version GIF version | ||
| Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
| Ref | Expression |
|---|---|
| spimeh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| spimeh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimeh | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spimeh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax6ev 1890 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
| 3 | spimeh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | eximii 1764 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
| 5 | 4 | 19.35i 1806 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: bj-spimevw 32657 bj-cbvexiw 32659 |
| Copyright terms: Public domain | W3C validator |